Publication Date
| In 2026 | 0 |
| Since 2025 | 180 |
| Since 2022 (last 5 years) | 1085 |
| Since 2017 (last 10 years) | 1813 |
| Since 2007 (last 20 years) | 1848 |
Descriptor
Source
Author
| Gaševic, Dragan | 24 |
| Dragan Gaševic | 17 |
| Ogata, Hiroaki | 15 |
| Baker, Ryan S. | 14 |
| Pardo, Abelardo | 13 |
| Roberto Martinez-Maldonado | 13 |
| Ouyang, Fan | 12 |
| Prinsloo, Paul | 12 |
| Rienties, Bart | 12 |
| Saqr, Mohammed | 12 |
| Hershkovitz, Arnon | 11 |
| More ▼ | |
Publication Type
Education Level
Location
| Australia | 76 |
| China | 62 |
| United Kingdom | 39 |
| Spain | 26 |
| Japan | 24 |
| Turkey | 24 |
| United States | 20 |
| Europe | 19 |
| Taiwan | 19 |
| Netherlands | 18 |
| Finland | 17 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Baars, Martine; Viberg, Olga – International Journal of Mobile and Blended Learning, 2022
This paper discusses the possibilities of using and designing mobile technology for learning purposes coupled with learning analytics to support self-regulated learning (SRL). Being able to self-regulate one's own learning is important for academic success but is also challenging. Research has shown that without instructional support, students are…
Descriptors: Electronic Learning, Independent Study, Learning Analytics, Metacognition
Pérez Sánchez, Carlos Javier; Calle-Alonso, Fernando; Vega-Rodríguez, Miguel A. – Education and Information Technologies, 2022
In this work, 29 features were defined and implemented to be automatically extracted and analysed in the context of NeuroK, a learning platform within the neurodidactics paradigm. Neurodidactics is an educational paradigm that addresses optimization of the learning and teaching process from the perspective of how the brain functions. In this…
Descriptors: Learning Analytics, Grade Prediction, Academic Achievement, Cooperative Learning
Sidi, Yael; Blau, Ina; Shamir-Inbal, Tamar – Journal of Computer Assisted Learning, 2022
Background: Hyper-video technology allows reflection on learning materials by writing personal notes and by interactions with lecturers and peers through shared posts and replies. While research shows that integrating hyper-videos in educational systems can promote the learning processes and outcomes, an open question remains regarding its actual…
Descriptors: Active Learning, Cooperative Learning, College Students, Documentation
Winne, Philip H. – Metacognition and Learning, 2022
Metacognition is the engine of self-regulated learning. At the object level, learners seek information and choose learning tactics and strategies they forecast will develop knowledge. At the meta level, learners gather and analyze data about learning events to draw conclusions, such as: Is this tactic a good fit to conditions? Was it effective?…
Descriptors: Metacognition, Learning Strategies, Computer Software, Data Analysis
Peer reviewedConrad Borchers; Jeroen Ooge; Cindy Peng; Vincent Aleven – Grantee Submission, 2025
Personalized problem selection enhances student practice in tutoring systems. Prior research has focused on transparent problem selection that supports learner control but rarely engages learners in selecting practice materials. We explored how different levels of control (i.e., full AI control, shared control, and full learner control), combined…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Learner Controlled Instruction, Learning Analytics
Wenyi Lu; Joseph Griffin; Troy D. Sadler; James Laffey; Sean P. Goggins – Journal of Learning Analytics, 2025
Game-based learning (GBL) is increasingly recognized as an effective tool for teaching diverse skills, particularly in science education, due to its interactive, engaging, and motivational qualities, along with timely assessments and intelligent feedback. However, more empirical studies are needed to facilitate its wider application in school…
Descriptors: Game Based Learning, Predictor Variables, Evaluation Methods, Educational Games
Kasra Lekan; Zachary A. Pardos – Journal of Learning Analytics, 2025
Choosing an undergraduate major is an important decision that impacts academic and career outcomes. In this work, we investigate augmenting personalized human advising for major selection using a large language model (LLM), GPT-4. Through a three-phase survey, we compare GPT suggestions and responses for undeclared first- and second-year students…
Descriptors: Technology Uses in Education, Artificial Intelligence, Academic Advising, Majors (Students)
Nick Hopwood; Tracey-Ann Palmer; Gloria Angela Koh; Mun Yee Lai; Yifei Dong; Sarah Loch; Kun Yu – International Journal of Research & Method in Education, 2025
Student emotions influence assessment task behaviour and performance but are difficult to study empirically. The study combined qualitative data from focus group interviews with 22 students and 4 teachers, with quantitative real-time learning analytics (facial expression, mouse click and keyboard strokes) to examine student emotional engagement in…
Descriptors: Psychological Patterns, Student Evaluation, Learning Analytics, Learner Engagement
Hatice Yildiz Durak – Education and Information Technologies, 2025
Feedback is critical in providing personalized information about educational processes and supporting their performance in online collaborative learning environments. However, giving effective feedback and monitoring its effects, which is especially important in online environments, is a complex issue. Although providing feedback by analyzing…
Descriptors: Feedback (Response), Online Systems, Electronic Learning, Learning Analytics
Yousri Attia Mohamed Abouelenein; Shaimaa Abdul Salam Selim; Tahani Ibrahim Aldosemani – Smart Learning Environments, 2025
Learning analytics provides valuable data to inform the best decisions for each learner. This study, based on adaptive environment (AE) learning analytics dashboards, examines how instructor interventions affect student self-regulation abilities and academic performance. It identifies the self-regulation categories requiring the most support to…
Descriptors: Foreign Countries, Higher Education, Preservice Teachers, Learning Analytics
Dimitrios Tzimas; Stavros Demetriadis – TechTrends: Linking Research and Practice to Improve Learning, 2025
Learning analytics (LA) is an educational innovation that enhances teaching practices and facilitates student learning. However, the degree of LA adoption across schools remains limited, and teachers who adopt LA do not engage with it consistently. Based on the unified theory of acceptance and use of technology (UTAUT) as a framework, we conducted…
Descriptors: Learning Analytics, Kindergarten, Elementary Secondary Education, Teacher Attitudes
Wen-shuang Fu; Jia-hua Zhang; Di Zhang; Tian-tian Li; Min Lan; Na-na Liu – Journal of Educational Computing Research, 2025
Cognitive ability is closely associated with the acquisition of programming skills, and enhancing learners' cognitive ability is a crucial factor in improving the efficacy of programming education. Adaptive feedback strategies can provide learners with personalized support based on their learning context, which helps to stimulate their interest…
Descriptors: Feedback (Response), Cognitive Ability, Programming, Computer Science Education
Conrad Borchers; Cindy Peng; Qianru Lyu; Paulo F. Carvalho; Kenneth R. Koedinger; Vincent Aleven – Grantee Submission, 2025
Many AIED systems support self-regulated learning, yet, support for setting and achieving practice goals has received little attention. We examine how middle school students respond to system-recommended practice goals, building on the success of similar data-driven recommendations in other domains. We introduce an adaptive dashboard in an…
Descriptors: Goal Orientation, Student Attitudes, Self Control, Intelligent Tutoring Systems
Jeongwon Lee; Dongho Kim – Journal of Computing in Higher Education, 2025
Although learning analytics dashboards (LADs) are being recognized as tools that can enhance engagement--a crucial factor for the success of asynchronous online higher education--their impact may be limited without a solid theoretical basis for motivation. Furthermore, the processes through which students make decisions using dashboards and engage…
Descriptors: Self Determination, Learning Analytics, Educational Technology, Learner Engagement
Aylin Ozturk; Robin Schmucker; Tom Mitchell; Alper Tolga Kumtepe – International Educational Data Mining Society, 2025
This study investigates the heterogeneity in the effects of a Learning Analytics Dashboard (LAD) intervention, which provides personalized feedback messages, across a diverse population of learners. Specifically, it evaluates the impact of the LAD on learners' total material usage and final grades, considering variables such as age, sex, prior…
Descriptors: Learning Analytics, Learning Management Systems, Feedback (Response), Grades (Scholastic)

Direct link
