Publication Date
| In 2026 | 0 |
| Since 2025 | 150 |
| Since 2022 (last 5 years) | 558 |
| Since 2017 (last 10 years) | 1105 |
| Since 2007 (last 20 years) | 1909 |
Descriptor
Source
Author
Publication Type
Education Level
Location
| Taiwan | 49 |
| China | 45 |
| United Kingdom | 29 |
| Pennsylvania | 27 |
| Germany | 25 |
| Turkey | 24 |
| Canada | 22 |
| Massachusetts | 22 |
| Spain | 22 |
| United States | 16 |
| California | 15 |
| More ▼ | |
Laws, Policies, & Programs
| Every Student Succeeds Act… | 3 |
| Elementary and Secondary… | 2 |
| American Rescue Plan Act 2021 | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 4 |
| Meets WWC Standards with or without Reservations | 6 |
| Does not meet standards | 2 |
Carvalho, Floran; Henriet, Julien; Greffier, Francoise; Betbeder, Marie-Laure; Leon-Henri, Dana – Journal of Education and e-Learning Research, 2023
This research is part of the Artificial Intelligence Virtual Trainer (AI-VT) project which aims to create a system that can identify the user's skills from a text by means of machine learning. AI-VT is a case-based reasoning learning support system can generate customized exercise lists that are specially adapted to user needs. To attain this…
Descriptors: Learning Processes, Algorithms, Artificial Intelligence, Programming Languages
Yuhui Yang; Hao Zhang; Huifang Chai; Wei Xu – Interactive Learning Environments, 2023
The COVID-19 pandemic has accelerated the transformation of education forms, and the combination of online and offline teaching has become the core development direction of university teaching at present and in the future. Therefore, appropriate teaching space is urgently needed to support the practice of blended teaching. Firstly, this paper…
Descriptors: Intelligent Tutoring Systems, Instructional Design, Universities, Blended Learning
Kole Norberg; Husni Almoubayyed; Stephen E. Fancsali; Logan De Ley; Kyle Weldon; April Murphy; Steve Ritter – Grantee Submission, 2023
Large Language Models have recently achieved high performance on many writing tasks. In a recent study, math word problems in Carnegie Learning's MATHia adaptive learning software were rewritten by human authors to improve their clarity and specificity. The randomized experiment found that emerging readers who received the rewritten word problems…
Descriptors: Word Problems (Mathematics), Mathematics Instruction, Artificial Intelligence, Intelligent Tutoring Systems
Hyeon-Ah Kang; Adam Sales; Tiffany A. Whittaker – Grantee Submission, 2023
Increasing use of intelligent tutoring systems in education calls for analytic methods that can unravel students' learning behaviors. In this study, we explore a latent variable modeling approach for tracking learning flow during computer-interactive artificial tutoring. The study considers three models that give discrete profiles of a latent…
Descriptors: Intelligent Tutoring Systems, Algebra, Educational Technology, Learning Processes
Xinyi Wu; Xiaohui Chen; Xingyang Wang; Hanxi Wang – Education and Information Technologies, 2025
With the application of virtual venues in the field of education, numerous educational empirical studies have examined the impact of deep learning in the learning environment of virtual venues, but the conclusions are not always in agreement. The present study adopted the meta-analysis method and RStudio software to test the overall effect of 45…
Descriptors: Literature Reviews, Meta Analysis, Artificial Intelligence, Intelligent Tutoring Systems
Anirudhan Badrinath; Zachary Pardos – Journal of Educational Data Mining, 2025
Bayesian Knowledge Tracing (BKT) is a well-established model for formative assessment, with optimization typically using expectation maximization, conjugate gradient descent, or brute force search. However, one of the flaws of existing optimization techniques for BKT models is convergence to undesirable local minima that negatively impact…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Problem Solving, Audience Response Systems
Yujie Han; Sumin Hong; Zhenyan Li; Cheolil Lim – TechTrends: Linking Research and Practice to Improve Learning, 2025
This scoping review investigates the roles of intelligent learning companion systems (LCS) within educational settings, as well as the presences artificial intelligence (AI) embodies within these roles, and their application in education. Employing the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for…
Descriptors: Artificial Intelligence, Definitions, Classification, Technology Uses in Education
J. Weidlich; D. Gaševic; H. Drachsler; P. Kirschner – Journal of Computer Assisted Learning, 2025
Background: As researchers rush to investigate the potential of AI tools like ChatGPT to enhance learning, well-documented pitfalls threaten the validity of this emerging research. Issues of media comparison research, where the confounding of instructional methods and technological affordances is unrecognised, may render effects uninterpretable.…
Descriptors: Artificial Intelligence, Technology Uses in Education, Educational Benefits, Barriers
Anqi Dou; Wei Xu; Ruijia Liu – International Journal of Information and Communication Technology Education, 2025
Artificial intelligence (AI)-based chatbots like ChatGPT represent a promising technological advancement that has the potential to revolutionize the field of education. Therefore, it is imperative to continue exploring and developing such AI-based tools to improve the learning outcomes of students. This study conducted a bibliometric review of…
Descriptors: Foreign Countries, Literature Reviews, Bibliometrics, Artificial Intelligence
Vasiliki Paltsoglou; Kostas Zafiropoulos – Open Education Studies, 2025
The usage of artificial intelligence (AI) in education is quickly growing, with chatbots gaining popularity as potential tools for supporting teaching and learning. This study looks into the elements that influence teachers' willingness to use chatbots in their teaching techniques. Drawing on the Unified Theory of Acceptance and Use of Technology,…
Descriptors: Foreign Countries, Elementary School Teachers, Artificial Intelligence, Natural Language Processing
Fiachra Long – Studies in Philosophy and Education, 2025
Conversation of a particular sort holds the key to learning. I argue here that peer to peer conversation promotes two features that are essential to progressive learning, namely 'contestation' and 'communication.' Traditional learning is principally concerned with whether students have reached a standard of knowledge and skill prescribed by some…
Descriptors: Artificial Intelligence, Natural Language Processing, Intelligent Tutoring Systems, Peer Relationship
Jionghao Lin; Zifei Han; Danielle R. Thomas; Ashish Gurung; Shivang Gupta; Vincent Aleven; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2025
One-on-one tutoring is widely acknowledged as an effective instructional method, conditioned on qualified tutors. However, the high demand for qualified tutors remains a challenge, often necessitating the training of novice tutors (i.e., trainees) to ensure effective tutoring. Research suggests that providing timely explanatory feedback can…
Descriptors: Artificial Intelligence, Technology Uses in Education, Tutor Training, Trainees
Mark Abdelshiheed; Tiffany Barnes; Min Chi – International Journal of Artificial Intelligence in Education, 2024
Two metacognitive knowledge types in deductive domains are procedural and conditional. This work presents a preliminary study on the impact of metacognitive knowledge and motivation on transfer across two Intelligent Tutoring Systems (ITSs), then two experiments on metacognitive knowledge instruction. Throughout this work, we trained students on a…
Descriptors: Metacognition, Intelligent Tutoring Systems, Cognitive Processes, Learning Strategies
A. N. Varnavsky – IEEE Transactions on Learning Technologies, 2024
The most critical parameter of audio and video information output is the playback speed, which affects many viewing or listening metrics, including when learning using tutoring systems. However, the availability of quantitative models for personalized playback speed control considering the learner's personal traits is still an open question. The…
Descriptors: Hierarchical Linear Modeling, Intelligent Tutoring Systems, Individualized Instruction, Electronic Learning
Juan Zheng; Shan Li; Tingting Wang; Susanne P. Lajoie – International Journal of Educational Technology in Higher Education, 2024
Emotions play a crucial role in the learning process, yet there is a scarcity of studies examining emotion dynamics in problem-solving with fine-grained data and advanced tools. This study addresses this gap by investigating the emotional trajectories during self-regulated learning (SRL) phases (i.e., forethought, performance, and self-reflection)…
Descriptors: Medical Students, Problem Solving, Intelligent Tutoring Systems, Nonverbal Communication

Peer reviewed
Direct link
