NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 376 to 390 of 2,245 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Taylor, John M. – Practical Assessment, Research & Evaluation, 2019
Although frequentist estimators can effectively fit ordinal confirmatory factor analysis (CFA) models, their assumptions are difficult to establish and estimation problems may prohibit their use at times. Consequently, researchers may want to also look to Bayesian analysis to fit their ordinal models. Bayesian methods offer researchers an…
Descriptors: Bayesian Statistics, Factor Analysis, Least Squares Statistics, Error of Measurement
Banerjee, Abhijit; Breza, Emily; Chandrasekhar, Arun G.; Mobius, Markus – National Bureau of Economic Research, 2019
The DeGroot model has emerged as a credible alternative to the standard Bayesian model for studying learning on networks, offering a natural way to model naive learning in a complex setting. One unattractive aspect of this model is the assumption that the process starts with every node in the network having a signal. We study a natural extension…
Descriptors: Alternative Assessment, Bayesian Statistics, Incidental Learning, Networks
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Grantee Submission, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Sandry, Joshua; Ricker, Timothy J. – Cognitive Research: Principles and Implications, 2022
The drift diffusion model (DDM) is a widely applied computational model of decision making that allows differentiation between latent cognitive and residual processes. One main assumption of the DDM that has undergone little empirical testing is the level of independence between cognitive and motor responses. If true, widespread incorporation of…
Descriptors: Decision Making, Motor Reactions, Cognitive Processes, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lazrig, Ibrahim; Humpherys, Sean L. – Information Systems Education Journal, 2022
Can sentiment analysis be used in an educational context to help teachers and researchers evaluate students' learning experiences? Are sentiment analyzing algorithms accurate enough to replace multiple human raters in educational research? A dataset of 333 students evaluating a learning experience was acquired with positive, negative, and neutral…
Descriptors: College Students, Learning Analytics, Educational Research, Learning Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Tingting; Aryadoust, Vahid; Foo, Stacy – Language Testing, 2022
This study evaluated the validity of the Michigan English Test (MET) Listening Section by investigating its underlying factor structure and the replicability of its factor structure across multiple test forms. Data from 3255 test takers across four forms of the MET Listening Section were used. To investigate the factor structure, each form was…
Descriptors: Factor Structure, Language Tests, Second Language Learning, Second Language Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Abdelhafez, Hoda Ahmed; Elmannai, Hela – International Journal of Information and Communication Technology Education, 2022
Learning data analytics improves the learning field in higher education using educational data for extracting useful patterns and making better decisions. Identifying potential at-risk students may help instructors and academic guidance to improve the students' performance and the achievement of learning outcomes. The aim of this research study is…
Descriptors: Learning Analytics, Mathematics, Prediction, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Piepho, Hans-Peter; Madden, Laurence V. – Research Synthesis Methods, 2022
Network meta-analysis is a popular method to synthesize the information obtained in a systematic review of studies (e.g., randomized clinical trials) involving subsets of multiple treatments of interest. The dominant method of analysis employs within-study information on treatment contrasts and integrates this over a network of studies. One…
Descriptors: Medical Research, Meta Analysis, Networks, Drug Therapy
Peer reviewed Peer reviewed
Direct linkDirect link
Winter, Sonja D.; Depaoli, Sarah – International Journal of Behavioral Development, 2020
This article illustrates the Bayesian approximate measurement invariance (MI) approach in Mplus with longitudinal data and small sample size. Approximate MI incorporates zero-mean small variance prior distributions on the differences between parameter estimates over time. Contrary to traditional invariance testing methods, where exact invariance…
Descriptors: Bayesian Statistics, Measurement, Data Analysis, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Piech, Chris; Bumbacher, Engin; Davis, Richard – International Educational Data Mining Society, 2020
One crucial function of a classroom, and a school more generally, is to prepare students for future learning. Students should have the capacity to learn new information and to acquire new skills. This ability to "learn" is a core competency in our rapidly changing world. But how do we measure ability to learn? And how can we measure how…
Descriptors: Academic Ability, Measurement, Middle School Students, Achievement Gains
Peer reviewed Peer reviewed
Direct linkDirect link
Ko, Chia-Yin; Leu, Fang-Yie – IEEE Transactions on Education, 2021
Contribution: This study applies supervised and unsupervised machine learning (ML) techniques to discover which significant attributes that a successful learner often demonstrated in a computer course. Background: Students often experienced difficulties in learning an introduction to computers course. This research attempts to investigate how…
Descriptors: Undergraduate Students, Student Characteristics, Academic Achievement, Predictor Variables
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Salas-Rueda, Ricardo-Adan; Salas-Rueda, Erika-Patricia; Salas-Rueda, Rodrigo-David – Turkish Online Journal of Distance Education, 2021
This mixed research aims to design and implement the Web Application on Bayes' Theorem (WABT) in the Statistical Instrumentation for Business subject. WABT presents the procedure to calculate the probability of Bayes' Theorem through the simulation of data about the supply of products. Technology Acceptance Model (TAM), machine learning and data…
Descriptors: Bayesian Statistics, Probability, College Students, Business Administration Education
Peer reviewed Peer reviewed
Direct linkDirect link
Chiu, Chuang-Kai; Tseng, Judy C. R. – Educational Technology & Society, 2021
Awareness of students' learning status, and maintaining students' focus and attention during class are important issues in classroom management. Several observation instruments have been designed for human observers to document students' engagement in class, but the processes are time-consuming and laborious. Recently, with the development of…
Descriptors: Bayesian Statistics, Classification, Classroom Techniques, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Pages: 1  |  ...  |  22  |  23  |  24  |  25  |  26  |  27  |  28  |  29  |  30  |  ...  |  150