NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 766 to 780 of 1,797 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kieftenbeld, Vincent; Natesan, Prathiba – Applied Psychological Measurement, 2012
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Descriptors: Test Length, Markov Processes, Item Response Theory, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Neumark, David – Journal of Human Resources, 2012
Audit studies testing for discrimination have been criticized because applicants from different groups may not appear identical to employers. Correspondence studies address this criticism by using fictitious paper applicants whose qualifications can be made identical across groups. However, Heckman and Siegelman (1993) show that group differences…
Descriptors: Equal Opportunities (Jobs), Labor Market, Evidence, Job Applicants
Dong, Nianbo; Lipsey, Mark W. – Society for Research on Educational Effectiveness, 2011
Attrition occurs when study participants who were assigned to the treatment and control conditions do not provide outcome data and thus do not contribute to the estimation of the treatment effects. It is very common in experimental studies in education as illustrated, for instance, in a meta-analysis studying "the effects of attrition on baseline…
Descriptors: Attrition (Research Studies), Educational Research, Scientific Methodology, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Gardenier, George H.; Gui, Feng; Demas, James N. – Journal of Chemical Education, 2011
Complex error propagation is reduced to formula and data entry into a Mathcad worksheet or an Excel spreadsheet. The Mathcad routine uses both symbolic calculus analysis and Monte Carlo methods to propagate errors in a formula of up to four variables. Graphical output is used to clarify the contributions to the final error of each of the…
Descriptors: Monte Carlo Methods, Computer Software, Calculus, Mathematics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Furno, Marilena – Journal of Educational and Behavioral Statistics, 2011
The article considers a test of specification for quantile regressions. The test relies on the increase of the objective function and the worsening of the fit when unnecessary constraints are imposed. It compares the objective functions of restricted and unrestricted models and, in its different formulations, it verifies (a) forecast ability, (b)…
Descriptors: Goodness of Fit, Statistical Inference, Regression (Statistics), Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Corlu, M. Sencer – International Review of Education, 2014
There are two mainstream curricula for international school students at the junior high level: the International Baccalaureate (IB) Middle Years Programme (MYP) and the Cambridge International General Certificate of Secondary Education (IGCSE). The former was developed in the mid-1990s and is currently being relaunched in a 21st-century approach.…
Descriptors: Advanced Placement Programs, Junior High School Students, International Schools, Educational Change
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability
Haardoerfer, Regine – ProQuest LLC, 2010
Hierarchical Linear Modeling (HLM) sample size recommendations are mostly made with traditional group-design research in mind, as HLM as been used almost exclusively in group-design studies. Single-case research can benefit from utilizing hierarchical linear growth modeling, but sample size recommendations for growth modeling with HLM are scarce…
Descriptors: Sample Size, Monte Carlo Methods, Research Methodology, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Biesanz, Jeremy C.; Falk, Carl F.; Savalei, Victoria – Multivariate Behavioral Research, 2010
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses (Baron & Kenny, 1986; Sobel, 1982) have in recent years…
Descriptors: Computation, Intervals, Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Henseler, Jorg; Chin, Wynne W. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…
Descriptors: Interaction, Least Squares Statistics, Computation, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Walters, Glenn D.; McGrath, Robert E.; Knight, Raymond A. – Psychological Assessment, 2010
The taxometric method effectively distinguishes between dimensional (1-class) and taxonic (2-class) latent structure, but there is virtually no information on how it responds to polytomous (3-class) latent structure. A Monte Carlo analysis showed that the mean comparison curve fit index (CCFI; Ruscio, Haslam, & Ruscio, 2006) obtained with 3…
Descriptors: Statistical Analysis, Factor Analysis, Monte Carlo Methods, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Marin-Martinez, Fulgencio; Sanchez-Meca, Julio – Educational and Psychological Measurement, 2010
Most of the statistical procedures in meta-analysis are based on the estimation of average effect sizes from a set of primary studies. The optimal weight for averaging a set of independent effect sizes is the inverse variance of each effect size, but in practice these weights have to be estimated, being affected by sampling error. When assuming a…
Descriptors: Meta Analysis, Sample Size, Effect Size, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Doyoung; De Ayala, R. J.; Ferdous, Abdullah A.; Nering, Michael L. – Applied Psychological Measurement, 2011
To realize the benefits of item response theory (IRT), one must have model-data fit. One facet of a model-data fit investigation involves assessing the tenability of the conditional item independence (CII) assumption. In this Monte Carlo study, the comparative performance of 10 indices for identifying conditional item dependence is assessed. The…
Descriptors: Item Response Theory, Monte Carlo Methods, Error of Measurement, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Yue; Stokes, Lynne; Harris, Ian; Wang, Yan – Journal of Educational and Behavioral Statistics, 2011
In this article, we consider estimation of parameters of random effects models from samples collected via complex multistage designs. Incorporation of sampling weights is one way to reduce estimation bias due to unequal probabilities of selection. Several weighting methods have been proposed in the literature for estimating the parameters of…
Descriptors: Sampling, Computation, Statistical Bias, Statistical Analysis
Corlu, Sencer M. – Online Submission, 2009
The problem with "classical" statistics all invoking the mean is that these estimates are notoriously influenced by atypical scores (outliers), partly because the mean itself is differentially influenced by outliers. In theory, "modern" statistics may generate more replicable characterizations of data, because at least in some…
Descriptors: Statistics, Statistical Analysis, Regression (Statistics), Monte Carlo Methods
Pages: 1  |  ...  |  48  |  49  |  50  |  51  |  52  |  53  |  54  |  55  |  56  |  ...  |  120