Publication Date
| In 2026 | 0 |
| Since 2025 | 29 |
| Since 2022 (last 5 years) | 208 |
| Since 2017 (last 10 years) | 670 |
| Since 2007 (last 20 years) | 1929 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Teachers | 424 |
| Practitioners | 267 |
| Researchers | 56 |
| Students | 49 |
| Administrators | 3 |
| Media Staff | 1 |
| Policymakers | 1 |
| Support Staff | 1 |
Location
| Turkey | 32 |
| Australia | 22 |
| Sweden | 14 |
| Germany | 13 |
| Greece | 12 |
| Indonesia | 12 |
| New York | 12 |
| Taiwan | 12 |
| United States | 11 |
| United Kingdom | 10 |
| Wisconsin | 9 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Attitude Scale | 1 |
| Flesch Kincaid Grade Level… | 1 |
| Group Embedded Figures Test | 1 |
| National Longitudinal Study… | 1 |
| Peabody Picture Vocabulary… | 1 |
What Works Clearinghouse Rating
Peer reviewedSolov'ev, Yu I. – Journal of Chemical Education, 1978
Historical account of Mendeleev's work in the chemistry of complex compounds is presented. (CP)
Descriptors: Chemical Reactions, Chemistry, College Science, Higher Education
Peer reviewedKesavasamy, K.; Krishnamurthy, N. – American Journal of Physics, 1978
Discusses the vibrations of a linear triatomic chain and shows that the addition of the third atom gives rise to an extra optical branch. The nature of the normal modes in ionic crystals and molecular crystals is also discussed. (GA)
Descriptors: Atomic Structure, Chemistry, College Science, Higher Education
Walker, Jearl – Scientific American, 1978
Examines the phenomenon of water drops that float on water at room temperature. Describes experiments that have been done to study this phenomenon. (MA)
Descriptors: Chemical Bonding, Chemistry, Molecular Structure, Resource Materials
Peer reviewedBloembergen, Nicolaas; Yablonovitch, Eli – Physics Today, 1978
Reviews the areas of laser chemistry, photochemistry, infrared lasers, and laser induced molecular reactions. (SL)
Descriptors: Atomic Theory, Chemical Reactions, Chemistry, Lasers
Peer reviewedRodriguez, F.; And Others – Journal of Chemical Education, 1987
This is part two in a series on classroom demonstrations of polymer principles. Described is how large molecules can be assembled from subunits (the process of polymerization). Examples chosen include both linear and branched or cross-linked molecules. (RH)
Descriptors: Chemical Reactions, Chemistry, College Science, Laboratory Experiments
Peer reviewedMcMillin, David R. – Journal of Chemical Education, 1985
Discusses how a metal ion is bound to a particular enzyme, focusing the blue copper centers found in a variety of organisms. Coordination geometry of the blue copper site, donor set, direct structural studies, and single-crystal spectroscopy are the major topic headings. (JN)
Descriptors: Biochemistry, College Science, Enzymes, Higher Education
Peer reviewedWagner, A. Ben – Online Review, 1986
Compares the differences in coverage and utility of three substructure databases--Chemical Abstracts, Index Chemicus, and Chemical Information System's Nomenclature Search System. The differences between Chemical Abstracts with two different vendors--STN International and Questel--are described and a summary guide for choosing between databases is…
Descriptors: Chemistry, Comparative Analysis, Databases, Information Retrieval
Peer reviewedSacks, Lawrence J. – Journal of Chemical Education, 1986
Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)
Descriptors: Chemical Bonding, Chemistry, College Science, Higher Education
Peer reviewedFox, Marye Anne; Matsen, F. A. – Journal of Chemical Education, 1985
Shows that electronic structure diagrams make more accurate predictions of spectral properties and chemical reactivity for simple pi systems than do either Huckel molecular orbital or valence bond theory alone. Topics addressed include absorption and photoelectron spectra, spin density distribution in radicals, and several problems regarding…
Descriptors: Chemical Bonding, Chemical Reactions, College Science, Higher Education
Tonegawa, Susumu – Scientific American, 1985
The immune system includes the most diverse proteins known because they are encoded by hundreds of scattered gene fragments which can be combined in millions or billions of ways. Events of immune response, binding of antigens, antibody structure, T-cell receptors, and other immunologically-oriented topics are discussed. (DH)
Descriptors: Biochemistry, Biology, College Science, Cytology
Berridge, Michael J. – Scientific American, 1985
Only a few substances serve as signals within cells; this indicates that internal signal pathways are remarkably universal. The variety of physiological and biochemical processes regulated by known messengers is discussed along with chemical structures, pathways, inositol-lipid cycles, and cell growth regulation. (DH)
Descriptors: Biochemistry, Biology, College Science, Cytology
Wilson, Allan C. – Scientific American, 1985
Discovery that mutations accumulate at steady rates over time in the genes of all lineages of plants and animals has led to new insights into evolution at the molecular and organismal levels. Discusses molecular evolution, examining deoxyribonuclei acid (DNA) sequences, morphological distances, and codon rate of change. (DH)
Descriptors: Biology, College Science, Cytology, DNA
Peer reviewedSacks, Lawrence J. – Journal of Chemical Education, 1986
Describes a bonding theory which provides a framework for the description of a wide range of substances and provides quantitative information of remarkable accuracy with far less computational effort than that required of other approaches. Includes applications, such as calculation of bond energies of two binary hydrides (methane and diborane).…
Descriptors: Chemical Bonding, Chemistry, College Science, Higher Education
Peer reviewedMcKenna, Anna G.; McKenna, Jack F. – Journal of Chemical Education, 1984
The valence-shell electron-pair repulsion (VSEPR) theory is a useful tool for predicting molecular structures. The major stumbling block in teaching VSEPR theory for coordination numbers two through six is in explaining the arrangement of five electron pairs. The dilemma of five-coordination and implications for instruction in introductory…
Descriptors: Chemical Bonding, Chemistry, College Science, Higher Education
Peer reviewedFox, Marye Anne; Matsen, F. A. – Journal of Chemical Education, 1985
Presents a new view of the electronic structure of pi systems that unifies molecular orbital and valence bond theories. Describes construction of electronic structure diagrams (central to this new view) which demonstrate how configuration interaction can improve qualitative predictions made from simple Huckel theory. (JN)
Descriptors: Chemical Bonding, College Science, Energy, Higher Education


