NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 736 to 750 of 2,830 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ting, Jeffrey M.; Ricarte, Ralm G.; Schneiderman, Deborah K.; Saba, Stacey A.; Jiang, Yaming; Hillmyer, Marc A.; Bates, Frank S.; Reineke, Theresa M.; Macosko, Christopher W.; Lodge, Timothy P. – Journal of Chemical Education, 2017
We present a collection of hands-on experiments that collectively teach precollege students fundamental concepts of polymer synthesis and characterization. These interactive experiments are performed annually as part of an all-day outreach event for high school students that can inform the development of ongoing polymer education efforts in a…
Descriptors: Science Instruction, Chemistry, Plastics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Sadie M.; Javner, Cassidy; Hackel, Benjamin J. – Journal of Chemical Education, 2017
The goal of this study was to create an accessible, inexpensive, and engaging experiment to teach high school and undergraduate chemistry or biology students about intermolecular forces and how they contribute to the behavior of biomolecules. We developed an enzyme-linked immunosorbent assay (ELISA) to probe specific structure-function…
Descriptors: High School Students, Undergraduate Students, Chemistry, Molecular Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Davis, Eric J.; Jones, Michael; Thiel, D. Alex; Pauls, Steve – Journal of Chemical Education, 2018
Additive manufacturing (3D printing) is a technology with near-unlimited potential for the chemical educator. However, its adoption into higher education has been limited by the dual requirements of expertise in 3D printing and 3D computer-aided design (CAD). Thus, its reported utilization in the chemistry curriculum has been within the creation…
Descriptors: Chemistry, Science Education, Open Source Technology, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Rodrigues, João P. G. L. M.; Melquiond, Adrien S. J.; Bonvin, Alexandre M. J. J. – Biochemistry and Molecular Biology Education, 2016
Molecular modelling and simulations are nowadays an integral part of research in areas ranging from physics to chemistry to structural biology, as well as pharmaceutical drug design. This popularity is due to the development of high-performance hardware and of accurate and efficient molecular mechanics algorithms by the scientific community. These…
Descriptors: Molecular Structure, Hands on Science, Undergraduate Students, Open Source Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Hati, Sanchita; Bhattacharyya, Sudeep – Biochemistry and Molecular Biology Education, 2016
A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and…
Descriptors: Chemistry, Active Learning, Student Projects, Laboratory Training
Peer reviewed Peer reviewed
Direct linkDirect link
Coppo, Paolo – Journal of Chemical Education, 2016
A 1 h classroom activity is presented, aimed at consolidating the concepts of microstates and Russell-Saunders energy terms in transition metal atoms and coordination complexes. The unconventional approach, based on logic and intuition rather than rigorous mathematics, is designed to stimulate discussion and enhance familiarity with quantum…
Descriptors: Quantum Mechanics, Numbers, Class Activities, Concept Teaching
Peer reviewed Peer reviewed
Direct linkDirect link
Nievas, Fiorela L.; Bogino, Pablo C.; Giordano, Walter – Biochemistry and Molecular Biology Education, 2016
Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences…
Descriptors: Science Instruction, Biochemistry, College Science, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Ochterski, Joseph; Lupacchino-Gilson, Lisa – Science Teacher, 2016
This article describes how the authors began a science, technology, engineering, art, and math (STEAM) collaboration and completed three projects of varying complexity in their art and chemistry classrooms. The projects align with the Next Generation Science Standards (NGSS Lead States 2013).
Descriptors: STEM Education, Teamwork, Art Education, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Becker, Nicole; Noyes, Keenan; Cooper, Melanie – Journal of Chemical Education, 2016
Characterizing how students construct causal mechanistic explanations for chemical phenomena can provide us with important insights into the ways that students develop understanding of chemistry concepts. Here, we present two qualitative studies of undergraduate general chemistry students' reasoning about the causes of London dispersion forces in…
Descriptors: Chemistry, Science Instruction, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Pentecost, Thomas; Weber, Sarah; Herrington, Deborah – Science Teacher, 2016
Research suggests that connecting the visible (macroscopic) world of chemical phenomena to the invisible (particulate) world of atoms and molecules enhances student understanding in chemistry. This approach aligns with the science standards and is fundamental to the redesigned AP Chemistry curriculum. However, chemistry is usually taught at the…
Descriptors: Chemistry, Molecular Structure, Visual Aids, Critical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H. – Journal of Chemical Education, 2016
Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…
Descriptors: Chemistry, Computer Graphics, Models, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott – Journal of Chemical Education, 2016
The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…
Descriptors: Printing, Technology Integration, Handheld Devices, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco – Physics Education, 2015
A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.
Descriptors: Physics, Measurement Techniques, Heat, Fuels
Peer reviewed Peer reviewed
Direct linkDirect link
Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K. – Biochemistry and Molecular Biology Education, 2015
Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…
Descriptors: Science Instruction, Laboratory Experiments, Biochemistry, Molecular Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Alcino J.; Müller, Klaus-Robert – Learning & Memory, 2015
The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field, researchers routinely use approaches and information from a variety of areas in neuroscience and other…
Descriptors: Molecular Biology, Molecular Structure, Neurosciences, Neurology
Pages: 1  |  ...  |  46  |  47  |  48  |  49  |  50  |  51  |  52  |  53  |  54  |  ...  |  189