NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1,276 to 1,290 of 2,199 results Save | Export
Santos, Olga Cristina, Ed.; Boticario, Jesus Gonzalez, Ed.; Romero, Cristobal, Ed.; Pechenizkiy, Mykola, Ed.; Merceron, Agathe, Ed.; Mitros, Piotr, Ed.; Luna, Jose Maria, Ed.; Mihaescu, Cristian, Ed.; Moreno, Pablo, Ed.; Hershkovitz, Arnon, Ed.; Ventura, Sebastian, Ed.; Desmarais, Michel, Ed. – International Educational Data Mining Society, 2015
The 8th International Conference on Educational Data Mining (EDM 2015) is held under auspices of the International Educational Data Mining Society at UNED, the National University for Distance Education in Spain. The conference held in Madrid, Spain, July 26-29, 2015, follows the seven previous editions (London 2014, Memphis 2013, Chania 2012,…
Descriptors: Data Analysis, Educational Research, Computer Uses in Education, Integrated Learning Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Gowda, Sujith M.; Baker, Ryan S.; Corbett, Albert T.; Rossi, Lisa M. – International Journal of Artificial Intelligence in Education, 2013
Recent research has extended student modeling to infer not just whether a student knows a skill or set of skills, but also whether the student has achieved robust learning--learning that enables the student to transfer their knowledge and prepares them for future learning (PFL). However, a student may fail to have robust learning in two fashions:…
Descriptors: Learning Processes, Transfer of Training, Outcomes of Education, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Gálvez, Jaime; Conejo, Ricardo; Guzmán, Eduardo – International Journal of Artificial Intelligence in Education, 2013
One of the most popular student modeling approaches is Constraint-Based Modeling (CBM). It is an efficient approach that can be easily applied inside an Intelligent Tutoring System (ITS). Even with these characteristics, building new ITSs requires carefully designing the domain model to be taught because different sources of errors could affect…
Descriptors: Models, Problem Solving, Intelligent Tutoring Systems, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol – Instructional Science: An International Journal of the Learning Sciences, 2017
Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) "sense making" of connections by verbally explaining how…
Descriptors: Elementary School Students, Grade 3, Grade 4, Grade 5
Roschelle, Jeremy; Murphy, Robert; Feng, Mingyu; Bakia, Marianne – Grantee Submission, 2017
In a rigorous evaluation of ASSISTments as an online homework support conducted in the state of Maine, SRI International reported that "the intervention significantly increased student scores on an end-of-the-year standardized mathematics assessment as compared with a control group that continued with existing homework practices."…
Descriptors: Homework, Program Effectiveness, Effect Size, Cost Effectiveness
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott; Liu, Ran; McNamara, Danielle – Grantee Submission, 2017
A number of studies have demonstrated links between linguistic knowledge and performance in math. Studies examining these links in first language speakers of English have traditionally relied on correlational analyses between linguistic knowledge tests and standardized math tests. For second language (L2) speakers, the majority of studies have…
Descriptors: Predictor Variables, Mathematics Achievement, English (Second Language), Natural Language Processing
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol – Grantee Submission, 2017
Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics (STEM) domains. We focus on two types of representational competencies: (1) "sense making" of connections by verbally…
Descriptors: Elementary School Students, Grade 3, Grade 4, Grade 5
Peer reviewed Peer reviewed
Direct linkDirect link
Rau, M. A.; Aleven, V.; Rummel, N.; Pardos, Z. – International Journal of Artificial Intelligence in Education, 2014
Providing learners with multiple representations of learning content has been shown to enhance learning outcomes. When multiple representations are presented across consecutive problems, we have to decide in what sequence to present them. Prior research has demonstrated that interleaving "tasks types" (as opposed to blocking them) can…
Descriptors: Intelligent Tutoring Systems, Visual Aids, Mathematics, Mixed Methods Research
Peer reviewed Peer reviewed
Direct linkDirect link
Dzikovska, Myroslava; Steinhauser, Natalie; Farrow, Elaine; Moore, Johanna; Campbell, Gwendolyn – International Journal of Artificial Intelligence in Education, 2014
Within STEM domains, physics is considered to be one of the most difficult topics to master, in part because many of the underlying principles are counter-intuitive. Effective teaching methods rely on engaging the student in active experimentation and encouraging deep reasoning, often through the use of self-explanation. Supporting such…
Descriptors: Intelligent Tutoring Systems, Electronics, Energy, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schmoelz, Alexander; Swertz, Christian; Forstner, Alexandra; Barberi, Alessandro – Science Education International, 2014
This contribution looks at the Intelligent Tutoring Interface for Technology Enhanced Learning, which integrates multistage-learning and inquiry-based learning in an adaptive e-learning system. Based on a common pedagogical ontology, adaptive e-learning systems can be enabled to recommend learning objects and activities, which follow inquiry-based…
Descriptors: Inquiry, Active Learning, Intelligent Tutoring Systems, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Trevors, Gregory; Duffy, Melissa; Azevedo, Roger – Educational Technology Research and Development, 2014
Hypermedia learning environments (HLE) unevenly present new challenges and opportunities to learning processes and outcomes depending on learner characteristics and instructional supports. In this experimental study, we examined how one such HLE--MetaTutor, an intelligent, multi-agent tutoring system designed to scaffold cognitive and…
Descriptors: Notetaking, Intelligent Tutoring Systems, Hypermedia, Scaffolding (Teaching Technique)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Olsen, Jennifer K.; Belenky, Daniel M.; Aleven, Vincent; Rummel, Nikol – Grantee Submission, 2014
Collaborative learning has been shown to be beneficial for older students, but there has not been much research to show if these results transfer to elementary school students. In addition, collaborative and individual modes of instruction may be better for acquiring different types of knowledge. Collaborative Intelligent Tutoring Systems (ITS)…
Descriptors: Intelligent Tutoring Systems, Cooperative Learning, Elementary School Students, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Allen, Laura; Crossley, Scott; Kyle, Kris; McNamara, Danielle S. – Grantee Submission, 2014
The current study examined relationships between expert human judgments of text quality and grammar and mechanical errors in student writing. A corpus of essays (N = 100) written by high school students in the W-Pal system was collected, coded for grammar and mechanical errors, and scored by expert human raters. Results revealed weak relations…
Descriptors: Grammar, Writing Evaluation, Writing Instruction, Essays
Graesser, Arthur; Li, Haiying; Forsyth, Carol – Grantee Submission, 2014
Learning is facilitated by conversational interactions both with human tutors and with computer agents that simulate human tutoring and ideal pedagogical strategies. In this article, we describe some intelligent tutoring systems (e.g., AutoTutor) in which agents interact with students in natural language while being sensitive to their cognitive…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Computer Simulation, Dialogs (Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Martins, Igor; de Morais, Felipe; Schaab, Bruno; Jaques, Patricia – International Journal of Information and Communication Technology Education, 2016
In most Intelligent Tutoring Systems, the help messages (hints) are not very clear for students as they are only presented textually and have little connection with the task elements. This can lead to students' undesired behaviors, like gaming the system, associated with low performance. In this paper, the authors aim at evaluating if the gestures…
Descriptors: Teaching Methods, Intelligent Tutoring Systems, Problem Solving, Equations (Mathematics)
Pages: 1  |  ...  |  82  |  83  |  84  |  85  |  86  |  87  |  88  |  89  |  90  |  ...  |  147