Publication Date
| In 2026 | 0 |
| Since 2025 | 15 |
| Since 2022 (last 5 years) | 170 |
| Since 2017 (last 10 years) | 410 |
| Since 2007 (last 20 years) | 1010 |
Descriptor
Source
Author
| Kromrey, Jeffrey D. | 21 |
| Fan, Xitao | 18 |
| Barcikowski, Robert S. | 16 |
| DeSarbo, Wayne S. | 14 |
| Donoghue, John R. | 12 |
| Ferron, John M. | 12 |
| Finch, W. Holmes | 12 |
| Zhang, Zhiyong | 11 |
| Cohen, Allan S. | 10 |
| Finch, Holmes | 10 |
| Kim, Seock-Ho | 10 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 49 |
| Practitioners | 22 |
| Teachers | 20 |
| Students | 4 |
| Administrators | 2 |
Location
| Germany | 10 |
| Australia | 7 |
| United Kingdom | 7 |
| Canada | 6 |
| Netherlands | 6 |
| United States | 6 |
| Belgium | 5 |
| California | 5 |
| Hong Kong | 5 |
| South Korea | 5 |
| Spain | 5 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 4 |
| Pell Grant Program | 2 |
| Aid to Families with… | 1 |
| American Recovery and… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 1 |
| Meets WWC Standards with or without Reservations | 1 |
| Does not meet standards | 1 |
Peer reviewedMcGraw, Kenneth O.; And Others – Journal of Consulting and Clinical Psychology, 1994
Suggest practical procedure for estimating number of subjects that need to be screened to obtain sample of fixed size that meets multiple correlated criteria. Procedure described is based on fact that least-squares regression provides good quadratic fit for Monte Carlo estimates of multivariate probabilities when they are plotted as function of…
Descriptors: Measurement Techniques, Monte Carlo Methods, Research Methodology, Research Problems
Peer reviewedKromrey, Jeffrey D.; Foster-Johnson, Lynn – Educational and Psychological Measurement, 1998
Provides a comparison of centered and raw-score analyses in least squares regression. The two methods are demonstrated with constructed data in a Monte Carlo study to be equivalent, yielding identical hypothesis tests associated with the moderation effect and regression equations that are functionally equivalent. (SLD)
Descriptors: Hypothesis Testing, Least Squares Statistics, Monte Carlo Methods, Raw Scores
Kim, Jwa K. – Research in the Schools, 1994
Effects of item parameters on ability estimation were investigated through Monte Carlo studies using the Expected-A-Posteriori estimation. Results show a significant effect of item discriminating parameter on standard error of ability estimation. As the discriminating parameter increases, the standard error decreases. (SLD)
Descriptors: Ability, Error of Measurement, Estimation (Mathematics), Item Response Theory
Peer reviewedNevitt, Jonathan; Hancock, Gregory R. – Journal of Experimental Education, 2000
Studied incorporating adjusted model fit information into the root mean square error of approximation fit index (RMSEA). Monte Carlo simulation results show that incorporating robust information into the RMSEA may yield improved performance for assessing model fit under nonnormal data situations. (SLD)
Descriptors: Error of Measurement, Goodness of Fit, Monte Carlo Methods, Structural Equation Models
Peer reviewedWang, LihShing; Li, Chun-Shan – Journal of Applied Measurement, 2001
Used Monte Carlo simulation to compare the relative measurement efficiency of polytomous modeling and dichotomous modeling under different scoring schemes and termination criteria. Results suggest that polytomous computerized adaptive testing (CAT) yields marginal gains over dichotomous CAT when termination criteria are more stringent. Discusses…
Descriptors: Adaptive Testing, Comparative Analysis, Computer Assisted Testing, Monte Carlo Methods
Shieh, Gwowen – Psychometrika, 2005
This article considers the problem of power and sample size calculations for normal outcomes within the framework of multivariate linear models. The emphasis is placed on the practical situation that not only the values of response variables for each subject are just available after the observations are made, but also the levels of explanatory…
Descriptors: Sample Size, Multivariate Analysis, Monte Carlo Methods, Intellectual Development
Markon, Kristian E.; Krueger, Robert F. – Psychological Methods, 2006
Distinguishing between discrete and continuous latent variable distributions has become increasingly important in numerous domains of behavioral science. Here, the authors explore an information-theoretic approach to latent distribution modeling, in which the ability of latent distribution models to represent statistical information in observed…
Descriptors: Statistical Distributions, Modeling (Psychology), Behavioral Sciences, Information Theory
Nevitt, Jonathan; Hancock, Gregory R. – Multivariate Behavioral Research, 2004
Through Monte Carlo simulation, small sample methods for evaluating overall data-model fit in structural equation modeling were explored. Type I error behavior and power were examined using maximum likelihood (ML), Satorra-Bentler scaled and adjusted (SB; Satorra & Bentler, 1988, 1994), residual-based (Browne, 1984), and asymptotically…
Descriptors: Statistical Data, Sample Size, Monte Carlo Methods, Structural Equation Models
Viechtbauer, Wolfgang – Journal of Educational and Behavioral Statistics, 2005
The meta-analytic random effects model assumes that the variability in effect size estimates drawn from a set of studies can be decomposed into two parts: heterogeneity due to random population effects and sampling variance. In this context, the usual goal is to estimate the central tendency and the amount of heterogeneity in the population effect…
Descriptors: Bias, Meta Analysis, Models, Effect Size
Taylor, Aaron B.; West, Stephen G.; Aiken, Leona S. – Educational and Psychological Measurement, 2006
Variables that have been coarsely categorized into a small number of ordered categories are often modeled as outcome variables in psychological research. The authors employ a Monte Carlo study to investigate the effects of this coarse categorization of dependent variables on power to detect true effects using three classes of regression models:…
Descriptors: Regression (Statistics), Classification, Monte Carlo Methods, Sample Size
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2004
There is an increasing use of Markov chain Monte Carlo (MCMC) algorithms for fitting statistical models in psychometrics, especially in situations where the traditional estimation techniques are very difficult to apply. One of the disadvantages of using an MCMC algorithm is that it is not straightforward to determine the convergence of the…
Descriptors: Psychometrics, Mathematics, Inferences, Markov Processes
Li, Yanmei; Bolt, Daniel M.; Fu, Jianbin – Applied Psychological Measurement, 2006
When tests are made up of testlets, standard item response theory (IRT) models are often not appropriate due to the local dependence present among items within a common testlet. A testlet-based IRT model has recently been developed to model examinees' responses under such conditions (Bradlow, Wainer, & Wang, 1999). The Bradlow, Wainer, and…
Descriptors: Models, Markov Processes, Item Response Theory, Tests
Candel, Math J. J. M.; Winkens, Bjorn – Journal of Educational and Behavioral Statistics, 2003
Multilevel analysis is a useful technique for analyzing longitudinal data. To describe a person's development across time, the quality of the estimates of the random coefficients, which relate time to individual changes in a relevant dependent variable, is of importance. The present study compares three estimators of the random coefficients: the…
Descriptors: Monte Carlo Methods, Least Squares Statistics, Computation, Longitudinal Studies
Ferron, John; Jones, Peggy K. – Journal of Experimental Education, 2006
The authors present a method that ensures control over the Type I error rate for those who visually analyze the data from response-guided multiple-baseline designs. The method can be seen as a modification of visual analysis methods to incorporate a mechanism to control Type I errors or as a modification of randomization test methods to allow…
Descriptors: Multivariate Analysis, Data Analysis, Inferences, Monte Carlo Methods
Tellinghuisen, Joel – Journal of Chemical Education, 2005
Monte Carlo computational experiments reveal that the ability to discriminate between first- and second-order kinetics from least-squares analysis of time-dependent concentration data is better than implied in earlier discussions of the problem. The problem is rendered as simple as possible by assuming that the order must be either 1 or 2 and that…
Descriptors: Kinetics, Environmental Research, Factor Structure, Statistical Distributions

Direct link
