Publication Date
| In 2026 | 1 |
| Since 2025 | 52 |
| Since 2022 (last 5 years) | 354 |
| Since 2017 (last 10 years) | 820 |
| Since 2007 (last 20 years) | 1613 |
Descriptor
Source
Author
Publication Type
Education Level
Location
| Australia | 31 |
| Germany | 20 |
| United Kingdom (England) | 18 |
| United States | 18 |
| Canada | 17 |
| Netherlands | 17 |
| United Kingdom | 14 |
| California | 12 |
| Spain | 12 |
| North Carolina | 11 |
| China | 10 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 4 |
| Individuals with Disabilities… | 2 |
| Aid to Families with… | 1 |
| Elementary and Secondary… | 1 |
| Elementary and Secondary… | 1 |
| Every Student Succeeds Act… | 1 |
| Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards with or without Reservations | 2 |
| Does not meet standards | 1 |
Ritter, Frauke; Standl, Bernhard – Informatics in Education, 2023
We live in a digital age, not least accelerated by the COVID-19 pandemic. It is all the more important in our society that students learn and master the key competence of algorithmic thinking to understand the informatics concepts behind every digital phenomena and thus is able to actively shape the future. For this to be successful, concepts must…
Descriptors: Algorithms, Information Science Education, Computer Science Education, COVID-19
Wagner, Richard K.; Moxley, Jerad; Schatschneider, Chris; Zirps, Fotena A. – Scientific Studies of Reading, 2023
Purpose: Bayesian-based models for diagnosis are common in medicine but have not been incorporated into identification models for dyslexia. The purpose of the present study was to evaluate Bayesian identification models that included a broader set of predictors and that capitalized on recent developments in modeling the prevalence of dyslexia.…
Descriptors: Bayesian Statistics, Identification, Dyslexia, Models
Ozdemir, Burhanettin; Gelbal, Selahattin – Education and Information Technologies, 2022
The computerized adaptive tests (CAT) apply an adaptive process in which the items are tailored to individuals' ability scores. The multidimensional CAT (MCAT) designs differ in terms of different item selection, ability estimation, and termination methods being used. This study aims at investigating the performance of the MCAT designs used to…
Descriptors: Scores, Computer Assisted Testing, Test Items, Language Proficiency
Christian Michael Smith; Noah Hirschl – Grantee Submission, 2022
In 2015, Wisconsin began mandating the ACT college entrance exam and the WorkKeys career readiness assessment. With population-level data and several quasi-experimental designs, we assess how this policy affected college attendance. We estimate a positive policy effect for middle/high-income students, no effect for low-income students, and greater…
Descriptors: Disadvantaged Youth, Low Income Students, College Attendance, College Readiness
Zwick, Rebecca; Ye, Lei; Isham, Steven – Journal of Educational Measurement, 2018
In typical differential item functioning (DIF) assessments, an item's DIF status is not influenced by its status in previous test administrations. An item that has shown DIF at multiple administrations may be treated the same way as an item that has shown DIF in only the most recent administration. Therefore, much useful information about the…
Descriptors: Test Bias, Testing, Test Items, Bayesian Statistics
Dynamic Bayesian Networks in Educational Measurement: Reviewing and Advancing the State of the Field
Reichenberg, Ray – Applied Measurement in Education, 2018
As the popularity of rich assessment scenarios increases so must the availability of psychometric models capable of handling the resulting data. Dynamic Bayesian networks (DBNs) offer a fast, flexible option for characterizing student ability across time under psychometrically complex conditions. In this article, a brief introduction to DBNs is…
Descriptors: Bayesian Statistics, Measurement, Student Evaluation, Psychometrics
Lorah, Julie Ann – AERA Online Paper Repository, 2018
The Bayesian information criterion (BIC) can be useful for model selection within multilevel modeling studies. However, the formula for BIC requires a value for N, which is unclear in multilevel models, since N is observed in at least two levels. The present study uses simulated data to evaluate the rate of false positives and power when using a…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Computation, Statistical Analysis
Orona, Gabe A. – Arts and Humanities in Higher Education: An International Journal of Theory, Research and Practice, 2021
In recent decades, philosophy has been identified as a general approach to enhance the maturity of higher education as a field of study by enriching theory and method. In this article, I offer a new set of philosophical recommendations to spur the disciplinary development of higher education, departing from previous work in several meaningful…
Descriptors: Higher Education, Educational Philosophy, Educational Theories, Student Centered Curriculum
De Bondt, Niki; De Maeyer, Sven; Donche, Vincent; Van Petegem, Peter – High Ability Studies, 2021
The aim of this study is to provide -- first theoretically and, subsequently, through an empirical analysis -- a rationale for including the concept of overexcitability in talent research, beyond the five-factor model personality traits. Moreover, the empirical part of this study makes use of an innovative statistical method to address the problem…
Descriptors: Personality Traits, Talent, Research, Gifted
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Hodges, Jaret; Mun, Rachel U.; Jones Roberson, Javetta; Flemister, Charles – Gifted Child Quarterly, 2021
Policy changes are an ever-present part of education. In 2019, legislators upended over two decades of gifted education policy in Texas with the removal of direct funding for gifted education. In its wake, the removal of funding shook educator morale and created uncertainty as to the future of gifted education in the state. In this article, we…
Descriptors: Teacher Attitudes, Educational Change, Gifted Education, Educational Policy
Verhavert, San; Bouwer, Renske; Donche, Vincent; De Maeyer, Sven – Assessment in Education: Principles, Policy & Practice, 2019
Comparative Judgement (CJ) aims to improve the quality of performance-based assessments by letting multiple assessors judge pairs of performances. CJ is generally associated with high levels of reliability, but there is also a large variation in reliability between assessments. This study investigates which assessment characteristics influence the…
Descriptors: Meta Analysis, Reliability, Comparative Analysis, Value Judgment
CadwalladerOlsker, Todd – Mathematics Teacher, 2019
Students studying statistics often misunderstand what statistics represent. Some of the most well-known misunderstandings of statistics revolve around null hypothesis significance testing. One pervasive misunderstanding is that the calculated p-value represents the probability that the null hypothesis is true, and that if p < 0.05, there is…
Descriptors: Statistics, Mathematics Education, Misconceptions, Hypothesis Testing
Merkle, E. C.; Furr, D.; Rabe-Hesketh, S. – Grantee Submission, 2019
Typical Bayesian methods for models with latent variables (or random effects) involve directly sampling the latent variables along with the model parameters. In high-level software code for model definitions (using, e.g., BUGS, JAGS, Stan), the likelihood is therefore specified as conditional on the latent variables. This can lead researchers to…
Descriptors: Bayesian Statistics, Comparative Analysis, Computer Software, Models
Liu, Yang; Wang, Xiaojing – Journal of Educational and Behavioral Statistics, 2020
Parametric methods, such as autoregressive models or latent growth modeling, are usually inflexible to model the dependence and nonlinear effects among the changes of latent traits whenever the time gap is irregular and the recorded time points are individually varying. Often in practice, the growth trend of latent traits is subject to certain…
Descriptors: Bayesian Statistics, Nonparametric Statistics, Regression (Statistics), Item Response Theory

Peer reviewed
Direct link
