NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 121 to 135 of 1,793 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Qin – Grantee Submission, 2023
When designing a study for causal mediation analysis, it is crucial to conduct a power analysis to determine the sample size required to detect the causal mediation effects with sufficient power. However, the development of power analysis methods for causal mediation analysis has lagged far behind. To fill the knowledge gap, I proposed a…
Descriptors: Sample Size, Statistical Analysis, Causal Models, Mediation Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Bansal, Monika; Bansal, Sunil; Kumar, Ramandeep – Physics Education, 2021
Simulation of physics phenomena is an indispensable part of experimental studies. Undergraduate and postgraduate physics students are often introduced to the simulation of various phenomena as one of the most important pedagogical tools. In this document, we demonstrate the simulations of the two-body decay of a particle and equilibrium states in…
Descriptors: Physics, Simulation, College Science, Mechanics (Physics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Orcan, Fatih – International Journal of Assessment Tools in Education, 2021
Monte Carlo simulation is a useful tool for researchers to estimated accuracy of a statistical model. It is usually used for investigating parameter estimation procedure or violation of assumption for some given conditions. To run a simulation either the paid software or open source but free program such as R is need to be used. For that,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Accuracy, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Weiss, Brandi A.; Dardick, William – Journal of Experimental Education, 2021
Classification measures and entropy variants can be used as indicators of model fit for logistic regression. These measures rely on a cut-point, "c," to determine predicted group membership. While recommendations exist for determining the location of the cut-point, these methods are primarily anecdotal. The current study used Monte Carlo…
Descriptors: Cutting Scores, Regression (Statistics), Classification, Monte Carlo Methods
Wang, Qian – ProQuest LLC, 2022
Over the last four decades, meta-analysis has proven to be a vital analysis strategy in educational research for synthesizing research findings from different studies. When synthesizing studies in a meta-analysis, it is common to assume that the true underlying effect varies from study to study, as studies will differ in design, participants,…
Descriptors: Meta Analysis, Educational Research, Maximum Likelihood Statistics, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Bitna; Sohn, Wonsook – Educational and Psychological Measurement, 2022
A Monte Carlo study was conducted to compare the performance of a level-specific (LS) fit evaluation with that of a simultaneous (SI) fit evaluation in multilevel confirmatory factor analysis (MCFA) models. We extended previous studies by examining their performance under MCFA models with different factor structures across levels. In addition,…
Descriptors: Goodness of Fit, Factor Structure, Monte Carlo Methods, Factor Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Celen, Umit; Aybek, Eren Can – International Journal of Assessment Tools in Education, 2022
Item analysis is performed by developers as an integral part of the scale development process. Thus, items are excluded from the scale depending on the item analysis prior to the factor analysis. Existing item discrimination indices are calculated based on correlation, yet items with different response patterns are likely to have a similar item…
Descriptors: Likert Scales, Factor Analysis, Item Analysis, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Erdem-Kara, Basak; Dogan, Nuri – International Journal of Assessment Tools in Education, 2022
Recently, adaptive test approaches have become a viable alternative to traditional fixed-item tests. The main advantage of adaptive tests is that they reach desired measurement precision with fewer items. However, fewer items mean that each item has a more significant effect on ability estimation and therefore those tests are open to more…
Descriptors: Item Analysis, Computer Assisted Testing, Test Items, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Babik, Dmytro; Stevens, Scott P.; Waters, Andrew; Tinapple, David – IEEE Transactions on Learning Technologies, 2020
Over the last 20 years, online peer review and assessment have become widely used and well-researched practices in education. Their use increased, especially with the proliferation of nonconventional large-scale and online modes of teaching and learning, such as Massive Open Online Courses (MOOCs). A well-designed peer-review system is expected to…
Descriptors: Peer Evaluation, Fidelity, Networks, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Melissa G. Wolf; Daniel McNeish – Grantee Submission, 2023
To evaluate the fit of a confirmatory factor analysis model, researchers often rely on fit indices such as SRMR, RMSEA, and CFI. These indices are frequently compared to benchmark values of 0.08, 0.06, and 0.96, respectively, established by Hu and Bentler (1999). However, these indices are affected by model characteristics and their sensitivity to…
Descriptors: Programming Languages, Cutting Scores, Benchmarking, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Esther Ulitzsch; Steffi Pohl; Lale Khorramdel; Ulf Kroehne; Matthias von Davier – Journal of Educational and Behavioral Statistics, 2024
Questionnaires are by far the most common tool for measuring noncognitive constructs in psychology and educational sciences. Response bias may pose an additional source of variation between respondents that threatens validity of conclusions drawn from questionnaire data. We present a mixture modeling approach that leverages response time data from…
Descriptors: Item Response Theory, Response Style (Tests), Questionnaires, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and also do not have predefined metrics. Structural equation modeling (SEM) is commonly used to analyze such data. This article discuss issues in latent-variable modeling as compared to regression analysis with composite-scores. Via logical reasoning and analytical results…
Descriptors: Error of Measurement, Measurement Techniques, Social Science Research, Behavioral Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yan; Kim, Eunsook; Ferron, John M.; Dedrick, Robert F.; Tan, Tony X.; Stark, Stephen – Educational and Psychological Measurement, 2021
Factor mixture modeling (FMM) has been increasingly used to investigate unobserved population heterogeneity. This study examined the issue of covariate effects with FMM in the context of measurement invariance testing. Specifically, the impact of excluding and misspecifying covariate effects on measurement invariance testing and class enumeration…
Descriptors: Role, Error of Measurement, Monte Carlo Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hinnant, Ben; Schulenberg, John; Jager, Justin – International Journal of Behavioral Development, 2021
Multifinality, equifinality, and fanning are important developmental concepts that emphasize understanding interindividual variability in trajectories over time. However, each concept implies that there are points in a developmental window where interindividual variability is more limited. We illustrate the multifinality concept under…
Descriptors: Individual Differences, Simulation, Effect Size, Prediction
Pages: 1  |  ...  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  ...  |  120