NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1434280
Record Type: Journal
Publication Date: 2024
Pages: 23
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1536-6367
EISSN: EISSN-1536-6359
Available Date: N/A
Novel Logarithmic Imputation Methods under Ranked Set Sampling
Shashi Bhushan; Anoop Kumar
Measurement: Interdisciplinary Research and Perspectives, v22 n3 p235-257 2024
The data we encounter in real life often contain missing values. In sampling methods, missing value imputation is done with different methods. This article proposes novel logarithmic type imputation methods for estimating the population mean in the presence of missing data under ranked set sampling (RSS). According to the determined theoretical results, the proposed imputation methods are found to be the most efficient in comparison to popularly known imputation methods like mean imputation, Al-Omari and Bouza (2014) imputation methods, Sohail et al. (2018) imputation methods, and Bhushan and Pandey (2016) type imputation methods utilizing RSS. Apart from this, a simulation study has been accomplished utilizing artificially drawn symmetric and asymmetric populations. The outcomes are encountered to be rather satisfactory, showing improvement over all existing imputation methods.
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A