Publication Date
| In 2026 | 0 |
| Since 2025 | 155 |
| Since 2022 (last 5 years) | 563 |
| Since 2017 (last 10 years) | 1110 |
| Since 2007 (last 20 years) | 1914 |
Descriptor
Source
Author
Publication Type
Education Level
Location
| Taiwan | 49 |
| China | 46 |
| United Kingdom | 29 |
| Pennsylvania | 27 |
| Germany | 25 |
| Turkey | 24 |
| Canada | 22 |
| Massachusetts | 22 |
| Spain | 22 |
| United States | 16 |
| California | 15 |
| More ▼ | |
Laws, Policies, & Programs
| Every Student Succeeds Act… | 3 |
| Elementary and Secondary… | 2 |
| American Rescue Plan Act 2021 | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 4 |
| Meets WWC Standards with or without Reservations | 6 |
| Does not meet standards | 2 |
Nongkhai, Lalita Na; Wang, Jingyun; Mendori, Takahiko – International Association for Development of the Information Society, 2022
This paper proposes the design of an ontology of multiple programming languages and give three examples to show the methodology. Our ontology aims to summarize the core of computational thinking logic by elaborating the concepts of three object-oriented programming languages in the industry: Python, Java, and C#. Therefore, the construction of the…
Descriptors: Programming Languages, Computer Science Education, Intelligent Tutoring Systems, Thinking Skills
Jionghao Lin; Shaveen Singh; Lela Sha; Wei Tan; David Lang; Dragan Gasevic; Guanliang Chen – Grantee Submission, 2022
To construct dialogue-based Intelligent Tutoring Systems (ITS) with sufficient pedagogical expertise, a trendy research method is to mine large-scale data collected by existing dialogue-based ITS or generated between human tutors and students to discover effective tutoring strategies. However, most of the existing research has mainly focused on…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Dialogs (Language), Man Machine Systems
Vincent Aleven; Jori Blankestijn; LuEttaMae Lawrence; Tomohiro Nagashima; Niels Taatgen – Grantee Submission, 2022
Past research has yielded ample knowledge regarding the design of analytics-based tools for teachers and has found beneficial effects of several tools on teaching and learning. Yet there is relatively little knowledge regarding the design of tools that support teachers when a class of students uses AI-based tutoring software for self-paced…
Descriptors: Educational Technology, Artificial Intelligence, Problem Solving, Intelligent Tutoring Systems
Ethan Prihar; Manaal Syed; Korinn Ostrow; Stacy Shaw; Adam Sales; Neil Heffernan – Grantee Submission, 2022
As online learning platforms become more ubiquitous throughout various curricula, there is a growing need to evaluate the effectiveness of these platforms and the different methods used to structure online education and tutoring. Towards this endeavor, some platforms have performed randomized controlled experiments to compare different user…
Descriptors: Educational Trends, Electronic Learning, Educational Experience, Educational Experiments
Ethan Prihar; Manaal Syed; Korinn Ostrow; Stacy Shaw; Adam Sales; Neil Heffernan – International Educational Data Mining Society, 2022
As online learning platforms become more ubiquitous throughout various curricula, there is a growing need to evaluate the effectiveness of these platforms and the different methods used to structure online education and tutoring. Towards this endeavor, some platforms have performed randomized controlled experiments to compare different user…
Descriptors: Educational Trends, Electronic Learning, Educational Experience, Educational Experiments
Ding, Xinyi; Larson, Eric C. – International Educational Data Mining Society, 2019
Knowledge tracing allows Intelligent Tutoring Systems to infer which topics or skills a student has mastered, thus adjusting curriculum accordingly. Deep Knowledge Tracing (DKT) uses recurrent neural networks (RNNs) for knowledge tracing and has achieved significant improvements compared with models like Bayesian Knowledge Tracing (BKT) and…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Skills
Nikola M. Luburic; Luka Z. Doric; Jelena J. Slivka; Dragan Lj. Vidakovic; Katarina-Glorija G. Grujic; Aleksandar D. Kovacevic; Simona B. Prokic – IEEE Transactions on Learning Technologies, 2025
Software engineers are tasked with writing functionally correct code of high quality. Maintainability is a crucial code quality attribute that determines the ease of analyzing, modifying, reusing, and testing a software component. This quality attribute significantly affects the software's lifetime cost, contributing to developer productivity and…
Descriptors: Intelligent Tutoring Systems, Coding, Computer Software, Technical Occupations
Seongyune Choi; Yeonju Jang; Hyeoncheol Kim – Interactive Learning Environments, 2024
Intelligent Personal Assistants (IPAs) are becoming more prevalent in daily and educational contexts, increasing the possibility of using them as learning partners that can provide more personalized and learner-centric learning opportunities. However, research has primarily focused on educational advantages that IPAs may provide, overlooking…
Descriptors: Intelligent Tutoring Systems, Foreign Countries, Technology Uses in Education, Independent Study
Elif Polat; Yunus Emre Bastug; Sinan Hopcan; Simge Cepdibi Sibiç; Nazli Ceren Isikligil – Journal of Learning and Teaching in Digital Age, 2024
This study investigates the primary school teachers' perceptions towards the Intelligent Material System (IMS), which was developed to enhance the quality of inclusive environments and support the academic skills of students with Special Educational Needs (SEN). Within this scope, IMS training was conducted with 84 classroom teachers who worked at…
Descriptors: Teacher Attitudes, Elementary School Teachers, Inclusion, Special Education
Shreya Singhal; Andres Felipe Zambrano; Maciej Pankiewicz; Xiner Liu; Chelsea Porter; Ryan S. Baker – International Educational Data Mining Society, 2024
Education is increasingly taking place in learning environments mediated by technology. This transition has made it easier to collect student-generated data including comments in discussion forums and chats. Although this data is extremely valuable to researchers, it often contains sensitive information like names, locations, social media links,…
Descriptors: MOOCs, Privacy, Confidential Records, Student Records
Dang, Steven C.; Koedinger, Kenneth R. – International Educational Data Mining Society, 2020
Effective teachers recognize the importance of transitioning students into learning activities for the day and accounting for the natural drift of student attention while creating lesson plans. In this work, we analyze temporal patterns of gaming behaviors during work on an intelligent tutoring system with a broader goal of detecting temporal…
Descriptors: Learner Engagement, Intelligent Tutoring Systems, Student Behavior, Student Motivation
Mangera, Elisabet; Supratno, Haris; Suyatno – Pegem Journal of Education and Instruction, 2023
This studied focus on the relationship between transhumanist and artificial intelligence in the Education Context; Particularly Teaching and Learning Process at private university in Makassar, South Sulawesi, Indonesia. Anchored by a qualitative analysis and participated by five teachers, the data were analyzed in-depth interview. It was designed…
Descriptors: Humanism, Artificial Intelligence, Learning Processes, Postsecondary Education
Wan, Haipeng; Yu, Shengquan – Interactive Learning Environments, 2023
Most online learning researchers use resource recommendation and retrieve based on learning performance and learning style to provide accurate learning resources, but it is a closed and passive adaptive way. Learners always do not know the recommendation rationale and just receive the result-oriented recommended resources without having a chance…
Descriptors: Electronic Learning, Intelligent Tutoring Systems, Artificial Intelligence, Cognitive Mapping
Wijaya, Adi; Setiawan, Noor Akhmad; Shapiai, Mohd Ibrahim – Electronic Journal of e-Learning, 2023
This study aims to provide a comprehensive overview of the current state and potential future research in learning style detection. With the increasing number and diversity of research in this area, a quantitative approach is necessary to map out current themes and identify potential areas for future research. To achieve this goal, a bibliometric…
Descriptors: Bibliometrics, Cognitive Style, Diagnostic Tests, Content Analysis
Troussas, Christos; Chrysafiadi, Konstantina; Virvou, Maria – Education and Information Technologies, 2021
Personalized computer-based tutoring demands learning systems and applications that identify and keep personal characteristics and features for each individual learner. This is achieved by the technology of student modeling. One prevalent technique of student modeling is stereotypes. Furthermore, individuals differ in how they learn. So, the way…
Descriptors: Individualized Instruction, Intelligent Tutoring Systems, Cognitive Style, Stereotypes

Peer reviewed
Direct link
