NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 361 to 375 of 2,251 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hall, Garret J.; Kaplan, David; Albers, Craig A. – Learning Disabilities Research & Practice, 2022
Bayesian latent change score modeling (LCSM) was used to compare models of triannual (fall, winter, spring) change on elementary math computation and concepts/applications curriculum-based measures. Data were collected from elementary students in Grades 2-5, approximately 700 to 850 students in each grade (47%-54% female; 78%-79% White, 10%-11%…
Descriptors: Learning Disabilities, Students with Disabilities, Elementary School Students, Mathematics Skills
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sarsa, Sami; Leinonen, Juho; Hellas, Arto – Journal of Educational Data Mining, 2022
New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-art models cannot be compared with each other at the time of publication. This leads to a situation where ranking models is hard, and the underlying reasons of the models' performance -- be it architectural choices, hyperparameter tuning, performance…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Tiahrt, Thomas; Hanus, Bartlomiej; Porter, Jason C. – Decision Sciences Journal of Innovative Education, 2022
Firms desire graduates capable of executing current and future business practices, many of which revolve around data. To meet those needs, we shifted the orientation of our required information systems course from technology to data. Instead of a survey of information systems, students learn the data acquisition-preparation-mining-presentation…
Descriptors: Information Systems, Information Science Education, Computer Software, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Nalborczyk, Ladislas; Batailler, Cédric; Lœvenbruck, Hélène; Vilain, Anne; Bürkner, Paul-Christian – Journal of Speech, Language, and Hearing Research, 2019
Purpose: Bayesian multilevel models are increasingly used to overcome the limitations of frequentist approaches in the analysis of complex structured data. This tutorial introduces Bayesian multilevel modeling for the specific analysis of speech data, using the brms package developed in R. Method: In this tutorial, we provide a practical…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Gender Differences, Vowels
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Enders, Craig K.; Du, Han; Keller, Brian T. – Grantee Submission, 2019
Despite the broad appeal of missing data handling approaches that assume a missing at random (MAR) mechanism (e.g., multiple imputation and maximum likelihood estimation), some very common analysis models in the behavioral science literature are known to cause bias-inducing problems for these approaches. Regression models with incomplete…
Descriptors: Hierarchical Linear Modeling, Regression (Statistics), Predictor Variables, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Rodríguez-Ferreiro, Javier; Vadillo, Miguel A.; Barberia, Itxaso – Teaching of Psychology, 2023
Background: We have previously presented two educational interventions aimed to diminish causal illusions and promote critical thinking. In both cases, these interventions reduced causal illusions developed in response to active contingency learning tasks, in which participants were able to decide whether to introduce the potential cause in each…
Descriptors: Sampling, Inferences, Psychology, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Logacev, Pavel – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
A number of studies have found evidence for the so-called "ambiguity advantage," that is, faster processing of ambiguous sentences compared with unambiguous counterparts. While a number of proposals regarding the mechanism underlying this phenomenon have been made, the empirical evidence so far is far from unequivocal. It is compatible…
Descriptors: Phrase Structure, Accuracy, Ambiguity (Semantics), Sentences
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Mangino, Anthony A.; Smith, Kendall A.; Finch, W. Holmes; Hernández-Finch, Maria E. – Measurement and Evaluation in Counseling and Development, 2022
A number of machine learning methods can be employed in the prediction of suicide attempts. However, many models do not predict new cases well in cases with unbalanced data. The present study improved prediction of suicide attempts via the use of a generative adversarial network.
Descriptors: Prediction, Suicide, Artificial Intelligence, Networks
Candelaria, Christopher A.; McNeill, Shelby M.; Shores, Kenneth A. – Annenberg Institute for School Reform at Brown University, 2022
School finance reforms are not well defined and are likely more prevalent than the current literature has documented. Using a Bayesian changepoint estimator, we quantitatively identify the years when state education revenues abruptly increased for each state between 1960 and 2008 and then document the state-specific events that gave rise to these…
Descriptors: Educational Finance, Finance Reform, Bayesian Statistics, Income
Peer reviewed Peer reviewed
Direct linkDirect link
Feinberg, Richard A. – Educational Measurement: Issues and Practice, 2021
Unforeseen complications during the administration of large-scale testing programs are inevitable and can prevent examinees from accessing all test material. For classification tests in which the primary purpose is to yield a decision, such as a pass/fail result, the current study investigated a model-based standard error approach, Bayesian…
Descriptors: High Stakes Tests, Classification, Decision Making, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Uglanova, Irina – Practical Assessment, Research & Evaluation, 2021
There is increased use of Bayesian networks (BN) in educational assessment. In psychometrics, BN serves as a measurement model with high flexibility, suitable to model educational assessment data with a complex structure. BN is a novel psychometric approach and not all aspects of its application are well-known. The article aims to provide the…
Descriptors: Bayesian Statistics, Educational Assessment, Psychometrics, Criticism
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Pages: 1  |  ...  |  21  |  22  |  23  |  24  |  25  |  26  |  27  |  28  |  29  |  ...  |  151