Publication Date
In 2025 | 16 |
Since 2024 | 59 |
Since 2021 (last 5 years) | 273 |
Since 2016 (last 10 years) | 761 |
Since 2006 (last 20 years) | 1996 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
Teachers | 424 |
Practitioners | 267 |
Researchers | 56 |
Students | 49 |
Administrators | 3 |
Media Staff | 1 |
Policymakers | 1 |
Support Staff | 1 |
Location
Turkey | 32 |
Australia | 22 |
Sweden | 14 |
Germany | 13 |
Greece | 12 |
Indonesia | 12 |
New York | 12 |
Taiwan | 12 |
United States | 11 |
United Kingdom | 10 |
Wisconsin | 9 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Attitude Scale | 1 |
Flesch Kincaid Grade Level… | 1 |
Group Embedded Figures Test | 1 |
National Longitudinal Study… | 1 |
Peabody Picture Vocabulary… | 1 |
What Works Clearinghouse Rating

Hames, B. David; And Others – Biochemical Education, 1990
An activity that introduces students to the correct handling of bacterial recombinants, antibiotic sensitivity testing, insertional inactivation, plasmid DNA isolation, restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, hybridization, and autoradiography is presented. A list of needed materials, procedures, safety…
Descriptors: Bacteria, Biochemistry, College Science, DNA

Hale, Edward M. – American Biology Teacher, 1993
Explains how a useful stereo image for overhead projection can be easily produced using technology available to most teachers. Red and green transparency films and red/green glasses are used to produce the three-dimensional view. (PR)
Descriptors: Biology, Chemistry, College Science, Educational Technology

Dyche, Steven; And Others – School Science and Mathematics, 1993
Raises questions regarding what students are perceiving when concrete models are used to represent abstract scientific concepts. Discussion of several exploratory investigations on the role of models in science teaching is presented in three areas: (1) interactions with students; (2) effectiveness of models; and (3) spatial ability and models.…
Descriptors: Atomic Structure, Cognitive Development, Concept Formation, Elementary Secondary Education
Venville, Grady; Gribble, Susan J.; Donovan, Jennifer – Science Education, 2005
This research examined 9- to 15-year-old children's understandings about basic genetics concepts and how they integrated those understandings with their broader theories of biology. A cross-sectional case study method was used to explore the students' (n = 90) understandings of basic inheritance and molecular genetics concepts such as gene and…
Descriptors: Data Analysis, Genetics, Preadolescents, Adolescents
Ealy, Julie B. – Journal of Science Education and Technology, 2004
Integration of molecular modeling into General Chemistry lab encourages students to dually process molecular concepts both verbally and pictorially. When students are tested utilizing questions not previously encountered the dual processing of information can contribute to a transfer to knowledge. General Chemistry students utilized molecular…
Descriptors: Students, Chemistry, Molecular Structure, Pretests Posttests
Booth, Deborah; Bateman, Robert C., Jr.; Sirochman, Rudy; Richardson, David C.; Richardson, Jane S.; Weiner, Steven W.; Farwell, Mary; Putnam-Evans, Cindy – Journal of Chemical Education, 2005
White and group used a two question, open-ended tests to separately evaluate students' learning of specific biochemical concepts in the general biology lecture and laboratory, in the first performance assessment of molecular visualization in teaching biochemistry. Two studies were devoted to protein structure using globins followed by one…
Descriptors: Science Laboratories, Performance Based Assessment, Student Evaluation, Evaluation Methods
Chudler, Eric H.; Konrady, Paula – Science Scope, 2006
Neuroscience is a subject that can motivate, excite, and stimulate the curiosity of everyone However, the study of the brain is made difficult by an abundance of new vocabulary words and abstract concepts. Although neuroscience has the potential to inspire students, many teachers find it difficult to include a study of the brain in their…
Descriptors: Vocabulary, Lifelong Learning, Kinetics, Art Activities
Kramer, IJsbrand; Thomas, Geraint – CBE - Life Sciences Education, 2006
In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of "teaching signal transduction." The purpose of the summer school was to offer both junior and senior university instructors a chance to…
Descriptors: Summer Schools, Content Area Writing, Investigations, Seminars
Rochford, Kevin – 1987
Two experiments were conducted to assess the performance of freshmen chemistry students with poor spatial visualization skills. In the first experiment, 31 chemistry students with academically deficient backgrounds completed a diagnostic test of their ability to visualize and interpret pictorial representations of simple molecular structures. At…
Descriptors: Chemistry, College Students, Diagnostic Tests, Higher Education

Pribyl, Jeffrey R.; Bodner, George M. – Journal of Research in Science Teaching, 1987
Reports on a study which examined the relationship between spatial ability and performance in organic chemistry. Results indicated that students with high spatial scores did significantly better on questions requiring problem solving skills, as well as on those requiring the mental manipulation of two-dimensional representations of a molecule. (TW)
Descriptors: Academic Achievement, Algorithms, Chemical Reactions, College Science

Fritz, James S. – Analytical Chemistry, 1987
Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)
Descriptors: Chemical Analysis, Chemical Bonding, Chemical Industry, Chemical Reactions

Enemark, John H. – Journal of Chemical Education, 1988
Presents the organization of a one-semester graduate course in structural chemistry including lectures and problems. Discusses the coverage of diffraction from real crystals and structure determination. Summarizes experiments on real crystals conducted by students in the X-ray laboratory. (CW)
Descriptors: Atomic Structure, Chemistry, College Science, Course Content

Walters, D. Eric; And Others – Journal of Chemical Education, 1986
Discusses ways that chemists have traditionally used models to represent chemical structures. Suggests new ways to construct three-dimensional models of receptor sites using thermoplastics or heavy aluminum foil. Provides sketches and photographs of several models. Points out the advantages of using such models over traditional two-dimensional…
Descriptors: Chemical Bonding, Chemical Reactions, Chemistry, College Science

Gilbert, George L., Ed. – Journal of Chemical Education, 1987
Describes two demonstrations suitable for chemistry instruction. One involves fractal structures obtained by electrodeposition of silver at an air-water interface and the other deals with molecular weights and music. (TW)
Descriptors: Chemistry, College Science, Demonstrations (Educational), Higher Education

Maderia, Vitor M. C.; Pires, Euclides M. V. – Journal of Chemical Education, 1986
Discusses the value of electrophoresis in the fields of protein chemistry and biochemistry. Describes how to build an inexpensive electrophoresis setup for use in either research or teaching activities. Details the construction of both the separating device and the power supply. (TW)
Descriptors: Building Plans, Chemical Analysis, Chemistry, College Science