Publication Date
In 2025 | 70 |
Since 2024 | 378 |
Since 2021 (last 5 years) | 1293 |
Since 2016 (last 10 years) | 1697 |
Since 2006 (last 20 years) | 1717 |
Descriptor
Source
Author
Gaševic, Dragan | 24 |
Ogata, Hiroaki | 15 |
Baker, Ryan S. | 14 |
Dragan Gaševic | 14 |
Pardo, Abelardo | 13 |
Ouyang, Fan | 12 |
Prinsloo, Paul | 12 |
Rienties, Bart | 12 |
Roberto Martinez-Maldonado | 12 |
Saqr, Mohammed | 12 |
Hershkovitz, Arnon | 11 |
More ▼ |
Publication Type
Education Level
Location
Australia | 73 |
China | 55 |
United Kingdom | 37 |
Spain | 25 |
Turkey | 23 |
Japan | 21 |
Europe | 18 |
Taiwan | 17 |
United States | 17 |
Finland | 16 |
Netherlands | 16 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
David Williamson Shaffer; Yeyu Wang; Andrew Ruis – Journal of Learning Analytics, 2025
Learning is a multimodal process, and learning analytics (LA) researchers can readily access rich learning process data from multiple modalities, including audio-video recordings or transcripts of in-person interactions; logfiles and messages from online activities; and biometric measurements such as eye-tracking, movement, and galvanic skin…
Descriptors: Learning Processes, Learning Analytics, Models, Data
Stephanie J. Blackmon; Robert L. Moore – Journal of Computing in Higher Education, 2024
As learning analytics use grows across U.S. colleges and universities, so does the need to discuss the plans, purposes, and paths for the data collected via learning analytics. More specifically, students, faculty, and others who are impacted by learning analytics use should have more information about their campus' learning analytics practices…
Descriptors: Learning Analytics, Networks, Models, Ethics
Oscar Blessed Deho; Lin Liu; Jiuyong Li; Jixue Liu; Chen Zhan; Srecko Joksimovic – IEEE Transactions on Learning Technologies, 2024
Learning analytics (LA), like much of machine learning, assumes the training and test datasets come from the same distribution. Therefore, LA models built on past observations are (implicitly) expected to work well for future observations. However, this assumption does not always hold in practice because the dataset may drift. Recently,…
Descriptors: Learning Analytics, Ethics, Algorithms, Models
Chen Zhan; Srecko Joksimovic; Djazia Ladjal; Thierry Rakotoarivelo; Ruth Marshall; Abelardo Pardo – IEEE Transactions on Learning Technologies, 2024
Data are fundamental to Learning Analytics (LA) research and practice. However, the ethical use of data, particularly in terms of respecting learners' privacy rights, is a potential barrier that could hinder the widespread adoption of LA in the education industry. Despite the policies and guidelines of privacy protection being available worldwide,…
Descriptors: Privacy, Learning Analytics, Ethics, Data Use
Xieling Chen; Di Zou; Gary Cheng; Haoran Xie – Education and Information Technologies, 2024
The rise of massive open online courses (MOOCs) brings rich opportunities for understanding learners' experiences based on analyzing learner-generated content such as course reviews. Traditionally, the unstructured textual data is analyzed qualitatively via manual coding, thus failing to offer a timely understanding of the learner's experiences.…
Descriptors: Artificial Intelligence, Semantics, Course Evaluation, MOOCs
Oleksandra Poquet – British Journal of Educational Technology, 2024
The paper argues that learning analytics as a research field can benefit from a theory-informed shared language to describe sensemaking of learning and teaching data. To make the case for such shared language, first, I critically review prominent sensemaking theories to then demonstrate how studies in learning analytics do not use coherent…
Descriptors: Learning Analytics, Data, Affordances, Theories
Xiaomeng Huang; Xavier Ochoa – Journal of Learning Analytics, 2025
Collaboration skills are fundamental to effective collaborative learning, career success, and responsible citizenship. Collaborative learning analytics (CLA) systems hold significant potential in helping students develop these skills by automatically collecting group interaction data, analyzing skill levels, and providing actionable feedback so…
Descriptors: Learning Analytics, Cooperative Learning, Cooperation, Skill Development
Masaya Okada; Koryu Nagata; Nanae Watanabe; Masahiro Tada – IEEE Transactions on Learning Technologies, 2024
A learner can autonomously acquire knowledge by experiencing the world, without necessarily being explicitly taught. The contents and ways of this type of real-world learning are grounded on his/her surroundings and are self-determined by computing real-world information. However, conventional studies have not modeled, observed, or understood a…
Descriptors: Computation, Learning Analytics, Experiential Learning, Self Management
Katerina Evers; Sufen Chen – Educational Technology Research and Development, 2024
Mind mapping is a powerful technique that is often used for teaching declarative knowledge, but seldom implemented to record procedural knowledge. The present study focused on the latter. During a 12-week public presentation course, self-developed mind mapping software was utilized as a learning tool and an instrument to collect and analyze user…
Descriptors: Concept Mapping, Concept Formation, Readability, Navigation
Elyda Freitas; Fernando Fonseca; Vinicius Cardoso Garcia; Taciana Pontual Falcao; Elaine Marques; Dragan Gaševic; Rafael Ferreira Mello – Journal of Learning Analytics, 2024
Learning analytics (LA) adoption is a challenging task for higher education institutions (HEIs) since it involves different aspects of the academic environment, such as information technology infrastructure, human resource management, ethics, and pedagogical issues. Therefore, it is necessary to provide institutions with supporting instruments to…
Descriptors: Learning Analytics, Higher Education, Models, Program Implementation
Soo Mang Lim; Husaina Banu Kenayathulla – Routledge, Taylor & Francis Group, 2024
This book explores Learning Analytics (LA) programmes and practices in Malaysia as well as looking at the underlying forces, dilemmas and policy challenges for quality assurance in higher education institutions (HEIs). This chapters provide a comprehensive discussion of trends in academic quality assurance in higher education. It articulates a…
Descriptors: Learning Analytics, Educational Quality, Quality Assurance, Higher Education
Kamila Misiejuk; Sonsoles López-Pernas; Rogers Kaliisa; Mohammed Saqr – Journal of Learning Analytics, 2025
Generative artificial intelligence (GenAI) has opened new possibilities for designing learning analytics (LA) tools, gaining new insights about student learning processes and their environment, and supporting teachers in assessing and monitoring students. This systematic literature review maps the empirical research of 41 papers utilizing GenAI…
Descriptors: Literature Reviews, Artificial Intelligence, Learning Analytics, Data Collection
Tianjiao Wang; Xiaona Xia – SAGE Open, 2023
The study of learning behaviors with multi features is of great significance for interactive cooperation. The data prediction and decision are to realize the comprehensive analysis and value mining. In this study, hierarchical learning behavior based on feature cluster is proposed. Based on the massive data in interactive learning environment, the…
Descriptors: Cluster Grouping, Mathematical Models, Artificial Intelligence, Learning Analytics
Giora Alexandron; Aviram Berg; Jose A. Ruiperez-Valiente – IEEE Transactions on Learning Technologies, 2024
This article presents a general-purpose method for detecting cheating in online courses, which combines anomaly detection and supervised machine learning. Using features that are rooted in psychometrics and learning analytics literature, and capture anomalies in learner behavior and response patterns, we demonstrate that a classifier that is…
Descriptors: Cheating, Identification, Online Courses, Artificial Intelligence
Susan T. Hibbard; Jeanne McClure; Shaun Kellogg – New Directions for Teaching and Learning, 2024
This chapter introduces the learning analytics as a catalyst to transform data utilization and bolster support for the scholarship of teaching and learning.
Descriptors: Learning Analytics, Allied Health Occupations Education, Data Use, Scholarship