Publication Date
| In 2026 | 1 |
| Since 2025 | 52 |
| Since 2022 (last 5 years) | 354 |
| Since 2017 (last 10 years) | 820 |
| Since 2007 (last 20 years) | 1613 |
Descriptor
Source
Author
Publication Type
Education Level
Location
| Australia | 31 |
| Germany | 20 |
| United Kingdom (England) | 18 |
| United States | 18 |
| Canada | 17 |
| Netherlands | 17 |
| United Kingdom | 14 |
| California | 12 |
| Spain | 12 |
| North Carolina | 11 |
| China | 10 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 4 |
| Individuals with Disabilities… | 2 |
| Aid to Families with… | 1 |
| Elementary and Secondary… | 1 |
| Elementary and Secondary… | 1 |
| Every Student Succeeds Act… | 1 |
| Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards with or without Reservations | 2 |
| Does not meet standards | 1 |
Dennis, Simon; Lee, Michael D.; Kinnell, Angela – Journal of Memory and Language, 2008
Recognition memory experiments are an important source of empirical constraints for theories of memory. Unfortunately, standard methods for analyzing recognition memory data have problems that are often severe enough to prevent clear answers being obtained. A key example is whether longer lists lead to poorer recognition performance. The presence…
Descriptors: Recognition (Psychology), Bayesian Statistics, Memory, Word Lists
Lamberts, Koen; Kent, Christopher – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2008
The time course of perception and retrieval of object features was investigated. Participants completed a perceptual matching task and 2 recognition tasks under time pressure. The recognition tasks imposed different retention loads. A stochastic model of feature sampling with a Bayesian decision component was used to estimate the rate of feature…
Descriptors: Memory, Language Processing, Bayesian Statistics, Recognition (Psychology)
Laru, Jari; Naykki, Piia; Jarvela, Sanna – Internet and Higher Education, 2012
In this single-case study, small groups of learners were supported by use of multiple social software tools and face-to-face activities in the context of higher education. The aim of the study was to explore how designed learning activities contribute to students' learning outcomes by studying probabilistic dependencies between the variables.…
Descriptors: Web Sites, Electronic Publishing, Cooperative Learning, Group Activities
van der Linden, Wim J. – Applied Psychological Measurement, 2009
An adaptive testing method is presented that controls the speededness of a test using predictions of the test takers' response times on the candidate items in the pool. Two different types of predictions are investigated: posterior predictions given the actual response times on the items already administered and posterior predictions that use the…
Descriptors: Simulation, Adaptive Testing, Vocational Aptitude, Bayesian Statistics
Choi, Jaehwa; Peters, Michelle; Mueller, Ralph O. – Asia Pacific Education Review, 2010
Correlational analyses are one of the most popular quantitative methods, yet also one of the mostly frequently misused methods in social and behavioral research, especially when analyzing ordinal data from Likert or other rating scales. Although several correlational analysis options have been developed for ordinal data, there seems to be a lack…
Descriptors: Rating Scales, Item Response Theory, Correlation, Behavioral Science Research
Lecoutre, Bruno; Lecoutre, Marie-Paule; Poitevineau, Jacques – Psychological Methods, 2010
P. R. Killeen's (2005a) probability of replication ("p[subscript rep]") of an experimental result is the fiducial Bayesian predictive probability of finding a same-sign effect in a replication of an experiment. "p[subscript rep]" is now routinely reported in "Psychological Science" and has also begun to appear in…
Descriptors: Research Methodology, Guidelines, Probability, Computation
Palardy, Gregory J. – Educational and Psychological Measurement, 2010
This article examines the multilevel linear crossed random effects growth model for estimating teacher and school effects from repeated measurements of student achievement. Results suggest that even a small degree of unmodeled nonlinearity can result in a substantial upward bias in the magnitude of the teacher effect, which raises concerns about…
Descriptors: Computation, Models, Statistical Analysis, Academic Achievement
Sharma, Richa – International Journal on E-Learning, 2011
Building intelligent course designing systems adaptable to the learners' needs is one of the key goals of research in e-learning. This goal is all the more crucial as gaining knowledge in an e-learning environment depends solely on computer mediated interaction within the learner group and among the learners and instructors. The patterns generated…
Descriptors: Electronic Learning, Educational Environment, Instructional Design, Student Needs
Feeney, Aidan; Wilburn, Catherine – Cognition, 2008
Although Sloutsky agrees with our interpretation of our data, he argues that the totality of the evidence supports his claim that children make inductive generalisations on the basis of similarity. Here we take issue with his characterisation of the alternative hypotheses in his informal analysis of the data, and suggest that a thorough Bayesian…
Descriptors: Bayesian Statistics, Logical Thinking, Child Development, Children
Hohwy, Jakob; Roepstorff, Andreas; Friston, Karl – Cognition, 2008
Binocular rivalry occurs when the eyes are presented with different stimuli and subjective perception alternates between them. Though recent years have seen a number of models of this phenomenon, the mechanisms behind binocular rivalry are still debated and we still lack a principled understanding of why a cognitive system such as the brain should…
Descriptors: Stimuli, Bayesian Statistics, Brain, Probability
Wang, Lijuan; McArdle, John J. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…
Descriptors: Simulation, Bayesian Statistics, Comparative Analysis, Computation
Zhang, Zhiyong; McArdle, John J.; Wang, Lijuan; Hamagami, Fumiaki – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Bayesian methods are becoming very popular despite some practical difficulties in implementation. To assist in the practical application of Bayesian methods, we show how to implement Bayesian analysis with WinBUGS as part of a standard set of SAS routines. This implementation procedure is first illustrated by fitting a multiple regression model…
Descriptors: Bayesian Statistics, Computer Software, Monte Carlo Methods, Multiple Regression Analysis
Weaver, Rhiannon – Cognitive Science, 2008
Model validation in computational cognitive psychology often relies on methods drawn from the testing of theories in experimental physics. However, applications of these methods to computational models in typical cognitive experiments can hide multiple, plausible sources of variation arising from human participants and from stochastic cognitive…
Descriptors: Models, Prediction, Cognitive Psychology, Computation
Iverson, Geoffrey J.; Wagenmakers, Eric-Jan; Lee, Michael D. – Psychological Methods, 2010
The purpose of the recently proposed "p[subscript rep]" statistic is to estimate the probability of concurrence, that is, the probability that a replicate experiment yields an effect of the same sign (Killeen, 2005a). The influential journal "Psychological Science" endorses "p[subscript rep]" and recommends its use…
Descriptors: Effect Size, Evaluation Methods, Probability, Experiments
Cumming, Geoff – Psychological Methods, 2010
This comment offers three descriptions of "p[subscript rep]" that start with a frequentist account of confidence intervals, draw on R. A. Fisher's fiducial argument, and do not make Bayesian assumptions. Links are described among "p[subscript rep]," "p" values, and the probability a confidence interval will capture…
Descriptors: Replication (Evaluation), Measurement Techniques, Research Methodology, Validity

Peer reviewed
Direct link
