NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 46 to 60 of 54,714 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Widaman, Keith F. – Educational and Psychological Measurement, 2023
The import or force of the result of a statistical test has long been portrayed as consistent with deductive reasoning. The simplest form of deductive argument has a first premise with conditional form, such as p[right arrow]q, which means that "if p is true, then q must be true." Given the first premise, one can either affirm or deny…
Descriptors: Hypothesis Testing, Statistical Analysis, Logical Thinking, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Céline Chapelle; Gwénaël Le Teuff; Paul Jacques Zufferey; Silvy Laporte; Edouard Ollier – Research Synthesis Methods, 2024
The number of meta-analyses of aggregate data has dramatically increased due to the facility of obtaining data from publications and the development of free, easy-to-use, and specialised statistical software. Even when meta-analyses include the same studies, their results may vary owing to different methodological choices. Assessment of the…
Descriptors: Meta Analysis, Replication (Evaluation), Data Analysis, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lanqin Zheng; Zichen Huang; Yang Liu – Journal of Learning for Development, 2024
In recent years, the growing incidence of blended and online learning has highlighted instructional design concerns, especially STEM instructional design. Existing studies have often adopted observations, questionnaires, or interviews to evaluate STEM instructional design plans. However, there is still a lack of quantitative, measurable, and…
Descriptors: STEM Education, Preservice Teachers, Information Transfer, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Melissa DeJonckheere; Lisa M. Vaughn; Tyler G. James; Amanda C. Schondelmeyer – Journal of Mixed Methods Research, 2024
Qualitative thematic analysis is a commonly used and widely applicable form of qualitative analysis, though it can be challenging to implement. Due to its use across research questions, qualitative traditions, and fields, thematic analysis is also prevalent in mixed methods studies. Despite its widespread use, the term "thematic…
Descriptors: Guidelines, Mixed Methods Research, Qualitative Research, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Il Do Ha – Measurement: Interdisciplinary Research and Perspectives, 2024
Recently, deep learning has become a pervasive tool in prediction problems for structured and/or unstructured big data in various areas including science and engineering. In particular, deep neural network models (i.e. a basic core model of deep learning) can be viewed as an extension of statistical models by going through the incorporation of…
Descriptors: Artificial Intelligence, Statistical Analysis, Models, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Kaitlyn G. Fitzgerald; Elizabeth Tipton – Grantee Submission, 2024
This article presents methods for using extant data to improve the properties of estimators of the standardized mean difference (SMD) effect size. Because samples recruited into education research studies are often more homogeneous than the populations of policy interest, the variation in educational outcomes can be smaller in these samples than…
Descriptors: Data Use, Computation, Effect Size, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We consider a class of multiple-group individually-randomized group trials (IRGTs) that introduces a (partially) cross-classified structure in the treatment condition (only). The novel feature of this design is that the nature of the treatment induces a clustering structure that involves two or more non-nested groups among individuals in the…
Descriptors: Randomized Controlled Trials, Research Design, Statistical Analysis, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
A. R. Georgeson – Structural Equation Modeling: A Multidisciplinary Journal, 2025
There is increasing interest in using factor scores in structural equation models and there have been numerous methodological papers on the topic. Nevertheless, sum scores, which are computed from adding up item responses, continue to be ubiquitous in practice. It is therefore important to compare simulation results involving factor scores to…
Descriptors: Structural Equation Models, Scores, Factor Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Alexander Kwon; Kyungtae Lee – Evaluation Review, 2025
We study the external validity of instrumental variable estimation. The key assumption we impose for external validity is conditional external unconfoundedness among compliers, which means that the treatment effect and target selection are independent among compliers conditional on covariates. We study this assumption with a case study about the…
Descriptors: Validity, Computation, Time Management, Fuels
Peer reviewed Peer reviewed
Direct linkDirect link
David Broska; Michael Howes; Austin van Loon – Sociological Methods & Research, 2025
Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed behavior are often not "interchangeable," there is limited guidance on using LLMs to obtain valid estimates of causal effects and other parameters. We argue that LLM predictions…
Descriptors: Artificial Intelligence, Observation, Prediction, Correlation
Jose Silva-Lugo; Heather Maness – Sage Research Methods Cases, 2025
The study provides a detailed methodological approach, cross-industry standard process for data mining, for predicting at-risk students with an imbalanced class. The objective was to identify the best machine learning model for predicting students at risk of failing the course during weeks 2-8 of the semester. We encountered issues in the dataset,…
Descriptors: Prediction, Predictor Variables, At Risk Students, Information Retrieval
Jose Silva-Lugo; Laura A. Warner – Sage Research Methods Cases, 2025
This case study analyzes the application of parametric and nonparametric statistical analyses with the multiple linear regression model in education and agricultural education research. The fields of education and agricultural education heavily rely on parametric analyses. We questioned the validity of the extensive use of such approaches after…
Descriptors: Behavior Theories, Intention, Statistical Analysis, Multiple Regression Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
David Grant; Phoebe Rose Levine; Anna Shapiro; Elizabeth D. Steiner; Ashley Woo; Jill S. Cannon; Christopher Joseph Doss; Lynn A. Karoly; Emma B. Kassan – RAND Corporation, 2025
This technical report provides detailed information about the sample, survey instruments, and resultant data for the Fall 2024 Pre-Kindergarten Teacher Survey (PKTS) which was administered via RAND's American Teacher Panel (ATP). The ATP is a nationally representative sample of public school teachers and part of the broader American Educator…
Descriptors: Preschool Teachers, Public School Teachers, Teacher Surveys, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Sean McGrath; XiaoFei Zhao; Omer Ozturk; Stephan Katzenschlager; Russell Steele; Andrea Benedetti – Research Synthesis Methods, 2024
When performing an aggregate data meta-analysis of a continuous outcome, researchers often come across primary studies that report the sample median of the outcome. However, standard meta-analytic methods typically cannot be directly applied in this setting. In recent years, there has been substantial development in statistical methods to…
Descriptors: Statistical Analysis, Meta Analysis, Data Analysis, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Anna-Carolina Haensch; Jonathan Bartlett; Bernd Weiß – Sociological Methods & Research, 2024
Discrete-time survival analysis (DTSA) models are a popular way of modeling events in the social sciences. However, the analysis of discrete-time survival data is challenged by missing data in one or more covariates. Negative consequences of missing covariate data include efficiency losses and possible bias. A popular approach to circumventing…
Descriptors: Research Methodology, Research Problems, Social Science Research, Statistical Analysis
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  3648