Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Artificial Intelligence | 2 |
| Predictive Measurement | 2 |
| Predictor Variables | 2 |
| Test Validity | 2 |
| At Risk Persons | 1 |
| At Risk Students | 1 |
| Causal Models | 1 |
| Child Welfare | 1 |
| Computer Assisted Testing | 1 |
| Disadvantaged | 1 |
| Dropout Characteristics | 1 |
| More ▼ | |
Author
| Abdulla Alhajri | 1 |
| Abdullah Almaatouq | 1 |
| Adaner Usmani | 1 |
| Ahmed Musse | 1 |
| Alex Pentland | 1 |
| Alexander T. Kindel | 1 |
| Allison C. Morgan | 1 |
| Anahit Sargsyan | 1 |
| Andrew E. Mack | 1 |
| Andrew Halpern-Manners | 1 |
| Andrew Or | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 2 |
| Reports - Research | 2 |
Education Level
| Higher Education | 1 |
| Postsecondary Education | 1 |
Audience
Location
| Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Thao-Trang Huynh-Cam; Long-Sheng Chen; Tzu-Chuen Lu – Journal of Applied Research in Higher Education, 2025
Purpose: This study aimed to use enrollment information including demographic, family background and financial status, which can be gathered before the first semester starts, to construct early prediction models (EPMs) and extract crucial factors associated with first-year student dropout probability. Design/methodology/approach: The real-world…
Descriptors: Foreign Countries, Undergraduate Students, At Risk Students, Dropout Characteristics
Matthew J. Salganik; Ian Lundberg; Alexander T. Kindel; Caitlin E. Ahearn; Khaled Al-Ghoneim; Abdullah Almaatouq; Drew M. Altschul; Jennie E. Brand; Nicole Bohme Carnegie; Ryan James Compton; Debanjan Datta; Thomas Davidson; Anna Filippova; Connor Gilroy; Brian J. Goode; Eaman Jahani; Ridhi Kashyap; Antje Kirchner; Stephen McKay; Allison C. Morgan; Alex Pentland; Kivan Polimis; Louis Raes; Daniel E. Rigobon; Claudia V. Roberts; Diana M. Stanescu; Yoshihiko Suhara; Adaner Usmani; Erik H. Wang; Muna Adem; Abdulla Alhajri; Bedoor AlShebli; Redwane Amin; Ryan B. Amos; Lisa P. Argyle; Livia Baer-Bositis; Moritz Büchi; Bo-Ryehn Chung; William Eggert; Gregory Faletto; Zhilin Fan; Jeremy Freese; Tejomay Gadgil; Josh Gagné; Yue Gao; Andrew Halpern-Manners; Sonia P. Hashim; Sonia Hausen; Guanhua He; Kimberly Higuera; Bernie Hogan; Ilana M. Horwitz; Lisa M. Hummel; Naman Jain; Kun Jin; David Jurgens; Patrick Kaminski; Areg Karapetyan; E. H. Kim; Ben Leizman; Naijia Liu; Malte Möser; Andrew E. Mack; Mayank Mahajan; Noah Mandell; Helge Marahrens; Diana Mercado-Garcia; Viola Mocz; Katariina Mueller-Gastell; Ahmed Musse; Qiankun Niu; William Nowak; Hamidreza Omidvar; Andrew Or; Karen Ouyang; Katy M. Pinto; Ethan Porter; Kristin E. Porter; Crystal Qian; Tamkinat Rauf; Anahit Sargsyan; Thomas Schaffner; Landon Schnabel; Bryan Schonfeld; Ben Sender; Jonathan D. Tang; Emma Tsurkov; Austin van Loon; Onur Varol; Xiafei Wang; Zhi Wang; Julia Wang; Flora Wang; Samantha Weissman; Kirstie Whitaker; Maria K. Wolters; Wei Lee Woon; James Wu; Catherine Wu; Kengran Yang; Jingwen Yin; Bingyu Zhao; Chenyun Zhu; Jeanne Brooks-Gunn; Barbara E. Engelhardt; Moritz Hardt; Dean Knox; Karen Levy; Arvind Narayanan; Brandon M. Stewart; Duncan J. Watts; Sara McLanahan – Grantee Submission, 2020
How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning…
Descriptors: Life Satisfaction, Family Life, Quality of Life, Disadvantaged

Peer reviewed
Direct link
