NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Metsämuuronen, Jari – Practical Assessment, Research & Evaluation, 2022
The reliability of a test score is usually underestimated and the deflation may be profound, 0.40 - 0.60 units of reliability or 46 - 71%. Eight root sources of the deflation are discussed and quantified by a simulation with 1,440 real-world datasets: (1) errors in the measurement modelling, (2) inefficiency in the estimator of reliability within…
Descriptors: Test Reliability, Scores, Test Items, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Kárász, Judit T.; Széll, Krisztián; Takács, Szabolcs – Quality Assurance in Education: An International Perspective, 2023
Purpose: Based on the general formula, which depends on the length and difficulty of the test, the number of respondents and the number of ability levels, this study aims to provide a closed formula for the adaptive tests with medium difficulty (probability of solution is p = 1/2) to determine the accuracy of the parameters for each item and in…
Descriptors: Test Length, Probability, Comparative Analysis, Difficulty Level
Tingir, Seyfullah – ProQuest LLC, 2019
Educators use various statistical techniques to explain relationships between latent and observable variables. One way to model these relationships is to use Bayesian networks as a scoring model. However, adjusting the conditional probability tables (CPT-parameters) to fit a set of observations is still a challenge when using Bayesian networks. A…
Descriptors: Bayesian Statistics, Statistical Analysis, Scoring, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J.; Leventhal, Brian C.; Ezike, Nnamdi C. – Measurement: Interdisciplinary Research and Perspectives, 2020
Data simulation and Monte Carlo simulation studies are important skills for researchers and practitioners of educational and psychological measurement, but there are few resources on the topic specific to item response theory. Even fewer resources exist on the statistical software techniques to implement simulation studies. This article presents…
Descriptors: Monte Carlo Methods, Item Response Theory, Simulation, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Andersson, Björn – Journal of Educational Measurement, 2016
In observed-score equipercentile equating, the goal is to make scores on two scales or tests measuring the same construct comparable by matching the percentiles of the respective score distributions. If the tests consist of different items with multiple categories for each item, a suitable model for the responses is a polytomous item response…
Descriptors: Equated Scores, Item Response Theory, Error of Measurement, Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Zu, Jiyun; Yuan, Ke-Hai – Journal of Educational Measurement, 2012
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…
Descriptors: Sample Size, Equated Scores, Test Items, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Atar, Burcu; Kamata, Akihito – Hacettepe University Journal of Education, 2011
The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…
Descriptors: Test Bias, Sample Size, Monte Carlo Methods, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Klockars, Alan J.; Lee, Yoonsun – Journal of Educational Measurement, 2008
Monte Carlo simulations with 20,000 replications are reported to estimate the probability of rejecting the null hypothesis regarding DIF using SIBTEST when there is DIF present and/or when impact is present due to differences on the primary dimension to be measured. Sample sizes are varied from 250 to 2000 and test lengths from 10 to 40 items.…
Descriptors: Test Bias, Test Length, Reference Groups, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Wyse, Adam E.; Mapuranga, Raymond – International Journal of Testing, 2009
Differential item functioning (DIF) analysis is a statistical technique used for ensuring the equity and fairness of educational assessments. This study formulates a new DIF analysis method using the information similarity index (ISI). ISI compares item information functions when data fits the Rasch model. Through simulations and an international…
Descriptors: Test Bias, Evaluation Methods, Test Items, Educational Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Nylund, Karen L.; Asparouhov, Tihomir; Muthen, Bengt O. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study…
Descriptors: Test Items, Monte Carlo Methods, Program Effectiveness, Data Analysis
Nandakumar, Ratna; Yu, Feng – 1994
DIMTEST is a statistical test procedure for assessing essential unidimensionality of binary test item responses. The test statistic T used for testing the null hypothesis of essential unidimensionality is a nonparametric statistic. That is, there is no particular parametric distribution assumed for the underlying ability distribution or for the…
Descriptors: Ability, Content Validity, Correlation, Nonparametric Statistics