Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 4 |
| Since 2007 (last 20 years) | 7 |
Descriptor
| Bayesian Statistics | 11 |
| Multiple Choice Tests | 11 |
| Test Items | 11 |
| Item Response Theory | 5 |
| Models | 4 |
| Probability | 4 |
| Foreign Countries | 3 |
| Test Construction | 3 |
| Accuracy | 2 |
| Achievement Tests | 2 |
| Computation | 2 |
| More ▼ | |
Source
Author
Publication Type
| Journal Articles | 10 |
| Reports - Research | 7 |
| Reports - Descriptive | 2 |
| Reports - Evaluative | 2 |
Education Level
| Higher Education | 3 |
| Postsecondary Education | 2 |
| Secondary Education | 2 |
Audience
Location
| Canada | 1 |
| Germany (Berlin) | 1 |
| Nigeria | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Mead, Alan D.; Zhou, Chenxuan – Journal of Applied Testing Technology, 2022
This study fit a Naïve Bayesian classifier to the words of exam items to predict the Bloom's taxonomy level of the items. We addressed five research questions, showing that reasonably good prediction of Bloom's level was possible, but accuracy varies across levels. In our study, performance for Level 2 was poor (Level 2 items were misclassified…
Descriptors: Artificial Intelligence, Prediction, Taxonomy, Natural Language Processing
Abu-Ghazalah, Rashid M.; Dubins, David N.; Poon, Gregory M. K. – Applied Measurement in Education, 2023
Multiple choice results are inherently probabilistic outcomes, as correct responses reflect a combination of knowledge and guessing, while incorrect responses additionally reflect blunder, a confidently committed mistake. To objectively resolve knowledge from responses in an MC test structure, we evaluated probabilistic models that explicitly…
Descriptors: Guessing (Tests), Multiple Choice Tests, Probability, Models
Ayanwale, Musa Adekunle; Isaac-Oloniyo, Flourish O.; Abayomi, Funmilayo R. – International Journal of Evaluation and Research in Education, 2020
This study investigated dimensionality of Binary Response Items through a non-parametric technique of Item Response Theory measurement framework. The study used causal comparative research type of nonexperimental design. The sample consisted of 5,076 public senior secondary school examinees (SSS3) between the age of 14-16 years from 45 schools,…
Descriptors: Test Items, Item Response Theory, Bayesian Statistics, Nonparametric Statistics
Ting, Mu Yu – EURASIA Journal of Mathematics, Science & Technology Education, 2017
Using the capabilities of expert knowledge structures, the researcher prepared test questions on the university calculus topic of "finding the area by integration." The quiz is divided into two types of multiple choice items (one out of four and one out of many). After the calculus course was taught and tested, the results revealed that…
Descriptors: Calculus, Mathematics Instruction, College Mathematics, Multiple Choice Tests
Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S. – Educational Research and Reviews, 2016
The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…
Descriptors: Maximum Likelihood Statistics, Computation, Item Response Theory, Test Items
Stiller, Jurik; Hartmann, Stefan; Mathesius, Sabrina; Straube, Philipp; Tiemann, Rüdiger; Nordmeier, Volkhard; Krüger, Dirk; Upmeier zu Belzen, Annette – Assessment & Evaluation in Higher Education, 2016
The aim of this study was to improve the criterion-related test score interpretation of a text-based assessment of scientific reasoning competencies in higher education by evaluating factors which systematically affect item difficulty. To provide evidence about the specific demands which test items of various difficulty make on pre-service…
Descriptors: Logical Thinking, Scientific Concepts, Difficulty Level, Test Items
Lee, Jihyun; Corter, James E. – Applied Psychological Measurement, 2011
Diagnosis of misconceptions or "bugs" in procedural skills is difficult because of their unstable nature. This study addresses this problem by proposing and evaluating a probability-based approach to the diagnosis of bugs in children's multicolumn subtraction performance using Bayesian networks. This approach assumes a causal network relating…
Descriptors: Misconceptions, Probability, Children, Subtraction
Sinharay, Sandip; Johnson, Matthew S.; Williamson, David M. – Journal of Educational and Behavioral Statistics, 2003
Item families, which are groups of related items, are becoming increasingly popular in complex educational assessments. For example, in automatic item generation (AIG) systems, a test may consist of multiple items generated from each of a number of item models. Item calibration or scoring for such an assessment requires fitting models that can…
Descriptors: Test Items, Markov Processes, Educational Testing, Probability
Johnson, Matthew S.; Sinharay, Sandip – 2003
For complex educational assessments, there is an increasing use of "item families," which are groups of related items. However, calibration or scoring for such an assessment requires fitting models that take into account the dependence structure inherent among the items that belong to the same item family. C. Glas and W. van der Linden…
Descriptors: Bayesian Statistics, Constructed Response, Educational Assessment, Estimation (Mathematics)
Revuelta, Javier – Psychometrika, 2004
Two psychometric models are presented for evaluating the difficulty of the distractors in multiple-choice items. They are based on the criterion of rising distractor selection ratios, which facilitates interpretation of the subject and item parameters. Statistical inferential tools are developed in a Bayesian framework: modal a posteriori…
Descriptors: Multiple Choice Tests, Psychometrics, Models, Difficulty Level
van Barneveld, Christina – Alberta Journal of Educational Research, 2003
The purpose of this study was to examine the potential effect of false assumptions regarding the motivation of examinees on item calibration and test construction. A simulation study was conducted using data generated by means of several models of examinee item response behaviors (the three-parameter logistic model alone and in combination with…
Descriptors: Simulation, Motivation, Computation, Test Construction

Peer reviewed
Direct link
