Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 1 |
Descriptor
| Bayesian Statistics | 2 |
| Item Response Theory | 2 |
| Learning | 2 |
| Test Items | 2 |
| Change | 1 |
| Computation | 1 |
| Development | 1 |
| Difficulty Level | 1 |
| Logical Thinking | 1 |
| Maximum Likelihood Statistics | 1 |
| Models | 1 |
| More ▼ | |
Source
| Applied Measurement in… | 1 |
Publication Type
| Journal Articles | 1 |
| Reports - Evaluative | 1 |
| Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lozano, José H.; Revuelta, Javier – Applied Measurement in Education, 2021
The present study proposes a Bayesian approach for estimating and testing the operation-specific learning model, a variant of the linear logistic test model that allows for the measurement of the learning that occurs during a test as a result of the repeated use of the operations involved in the items. The advantages of using a Bayesian framework…
Descriptors: Bayesian Statistics, Computation, Learning, Testing
Mislevy, Robert J.; Wilson, Mark – 1992
Standard item response theory (IRT) models posit latent variables to account for regularities in students' performance on test items. They can accommodate learning only if the expected changes in performance are smooth, and, in an appropriate metric, uniform over items. Wilson's "Saltus" model extends the ideas of IRT to development that…
Descriptors: Bayesian Statistics, Change, Development, Item Response Theory

Peer reviewed
Direct link
