NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dong, Yi; Biswas, Gautam – International Educational Data Mining Society, 2017
This paper discusses a novel approach for developing more refined and accurate learner models from student data collected from Open Ended Learning Environments (OELEs). OELEs provide students choice in how they go about constructing solutions to problems, and students exhibit a variety of learning behaviors in such environments. Building accurate…
Descriptors: Student Behavior, Models, Monte Carlo Methods, Learning Processes
Paquette, Luc; Rowe, Jonathan; Baker, Ryan; Mott, Bradford; Lester, James; DeFalco, Jeanine; Brawner, Keith; Sottilare, Robert; Georgoulas, Vasiliki – International Educational Data Mining Society, 2016
Computational models that automatically detect learners' affective states are powerful tools for investigating the interplay of affect and learning. Over the past decade, affect detectors--which recognize learners' affective states at run-time using behavior logs and sensor data--have advanced substantially across a range of K-12 and postsecondary…
Descriptors: Models, Affective Behavior, Intelligent Tutoring Systems, Games