NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 64 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Carroll, Ryan; Lincoln, James – Physics Teacher, 2020
The phyphox app has demonstrated itself to be useful and impressive for physics teaching. The app is free to download and has so many features that it seems it may be particularly helpful in this time of distance learning. Phyphox (pronounced to sound like "physics") works for Android and Apple phones, and there are many experiments…
Descriptors: Physics, Science Instruction, Teaching Methods, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Yu, Fahong; Chen, Meijia; Zhu, Qiang; Yu, Bolin; Liu, Jianhua; Cai, Zhaoquan – International Journal of Distance Education Technologies, 2023
Aimed to adapt the experimental teaching to keeping up with the actual application of the experimental scene, an experimental teaching based on virtual-real combination for mobile communication was proposed in this article, which realized the collaborative mode of combining online virtual operations and real operations. The virtual experiments…
Descriptors: Computer Simulation, Handheld Devices, Telecommunications, Computer Mediated Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Destino, Joel F.; Cunningham, Katie – Journal of Chemical Education, 2020
In light of COVID-19 in spring 2020, we developed a simple and versatile inquiry-based, laboratory-style active learning colorimetry experiment amenable to at-home quantitative analysis. In this experiment, students acquire an external calibration method using aqueous solutions of a self-selected chromophoric analyte from household products using…
Descriptors: Science Instruction, Chemistry, Science Laboratories, COVID-19
Peer reviewed Peer reviewed
Direct linkDirect link
Chatchawaltheerat, Theerawat; Khemmani, Supitch; Puttharugsa, Chokchai – Physics Education, 2021
This paper demonstrates the use of a smartphone's sensors in recording experimental data for investigating the large angle of a physical pendulum. The smartphone (iPhone 5s) was attached to a beam to record simultaneously both the angular position and the angular speed of the beam oscillating about the pivot. The period and phase space of the…
Descriptors: Telecommunications, Handheld Devices, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Wannous, Jarier; Horvath, Peter – Physics Teacher, 2023
Measuring permeability in a high school physics course has long been a hard task. However, with the advent of using smartphones in the classroom, it is not only possible but even easily done. This paper offers detailed instructions on how to measure permeability using a smartphone's magnetometer, starting with experimentally discovering the…
Descriptors: Magnets, Telecommunications, Handheld Devices, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Hughes, Stephen; Croxford, Tim – Physics Education, 2022
The first of the two postulates of relativity states that the laws of physics are the same in all inertial reference frames. Often it is assumed that the postulates are mainly concerned with objects moving at a significant fraction of the speed of light. However, the postulates are applicable at all speeds from a snail to a photon. To practically…
Descriptors: Physics, Science Instruction, Teaching Methods, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Wesley Beccaro; Elisabete Galeazzo; Denise Consonni; Henrique E. Maldonado Peres; Leopoldo R. Yoshioka – IEEE Transactions on Education, 2024
Contribution: The evaluation of analog-to-digital conversion methods constitutes a key component of an Instrumentation course. This study introduces an affordable educational platform based on Arduino UNO board designed for teaching analog-to-digital conversion concepts, supported by virtual instruments (VIs). Background: ADCs are electronic…
Descriptors: Engineering Education, Learning Management Systems, Teaching Methods, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Priyanto, Aan; Yusmantoro; Aji, Mahardika Prasetya – Physics Teacher, 2020
When we travel in a train moving at a certain velocity, we observe the stationary objects outside are moving backwards. These stationary objects seem to move due to a relative velocity. Consider that the stationary object outside the train is a man standing on the stationary floor watching a woman moving on a train. The woman on a train will see…
Descriptors: Telecommunications, Handheld Devices, Motion, Physics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Alexandros, Kateris; Panagiotis, Lazos; Serafeim, Tsoukos; Pavlos, Tzamalis; Athanasios, Velentzas – European Journal of Physics Education, 2020
Several suggestions for the use of Mobile Phone (MP) sensors in science teaching are found in the literature, and most of them focus on proposing physics experiments that can be conducted with the aid of the sensors that commonly exist in smartphones. The proposed experiments rely on the Bring Your Own Devices (BYOD) approach, that is, students…
Descriptors: Physics, Science Instruction, Teaching Methods, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Pathak, Praveen; Patel, Yogita – Physics Education, 2020
A phone emitting sound of a fixed frequency is sliding on an inclined plane and approaching a second phone kept at the bottom of the plane. The detected frequency versus time data by the second phone are used to calculate the acceleration of the sliding phone. The primary objective of this paper is to calculate the sliding friction between the…
Descriptors: Telecommunications, Handheld Devices, Science Instruction, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Ogawara, Yasuo – Physics Teacher, 2020
When we teach thermodynamics, a vacuum container used to keep food isolated from air is a cheap and interesting teaching device. There are some experiments already described in the literature and we can also find videos of demonstrations on YouTube. At the same time, there is increasing interest in how to utilize smartphones in physics…
Descriptors: Science Instruction, Physics, Thermodynamics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie – Physics Education, 2022
Students' understanding of forces in circular motion is often incomplete. The problems are not limited to confusions about centripetal acceleration and centrifugal forces. This paper considers possible effects of different interventions by a teacher who has discovered the many types of free-body diagrams drawn by students for circular motion in a…
Descriptors: Intervention, Teaching Methods, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Iraya Yánez-Pérez; Radu Bogdan Toma; Jesús Ángel Meneses-Villagrá – Journal of New Approaches in Educational Research, 2024
Virtual laboratories and simulations have emerged as innovative solutions for science teaching. However, existing resources have various limitations and constraints including cognitive load/mental burden and limited coverage of all necessary steps in scientific inquiry, focusing mainly on the experimental simulation. To bridge this gap and address…
Descriptors: Preservice Teachers, Student Attitudes, Computer Software, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Dean; Liu, Lilan; Zhou, Shaona – Physics Teacher, 2020
Interest in smartphone-based learning, especially in the use of internal sensors in smartphones for physics experiments, is increasing rapidly. Internal sensors in smartphones such as acoustic sensor, optical sensor, and acceleration sensor can help researchers alleviate the problems including insufficient accuracy with low-cost equipment, high…
Descriptors: Physics, Science Instruction, Teaching Methods, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Hughes, Stephen; Gurung, Som – Physics Education, 2021
Huygens' principle in which every point on a propagating wave acts like a point source of radiation is a foundation principle of physics. Normally, Huygens' principle is demonstrated by passing a wave, for example a water or light wave through an aperture comparable in size to the wavelength. In this paper, an experiment is described in which a…
Descriptors: Physics, Science Instruction, Teaching Methods, Scientific Principles
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5