NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Monteiro, L. H. A. – International Journal of Mathematical Education in Science and Technology, 2023
The process of turning a doctoral student into an independent researcher is usually guided by a professor. In this work, the supervisor-supervisee relationship is represented by a scheme inspired by Michaelis-Menten kinetics, which has been used to determine the rate of enzyme-catalysed reactions. Here, the time evolution of the number of…
Descriptors: Models, Kinetics, Equations (Mathematics), Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Di Vincenzo, Antonella; Floriano, Michele A. – Journal of Chemical Education, 2020
An application for visualizing the dynamic properties of an equimolar binary mixture of isotropic reactive particles is presented. By introducing a user selectable choice for the activation energy, the application is useful to demonstrate qualitatively that the reaction rate depends on the above choice and on temperature. The application is based…
Descriptors: High School Students, Undergraduate Students, Molecular Structure, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Schubert, Frederic E. – Journal of Chemical Education, 2015
In this exercise, an actual chemical reaction, oxidation of iron in air, is studied along with a related analogue simulation of that reaction. The rusting of steel wool is carried out as a class effort. The parallel simulation is performed by students working in small groups. The analogue for the reacting gas is a countable set of discrete marble…
Descriptors: Introductory Courses, Chemistry, Science Experiments, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Halkides, Christopher J.; Herman, Russell – Journal of Chemical Education, 2007
We describe a computer tutorial that introduces the concept of the steady state in enzyme kinetics. The tutorial allows students to produce graphs of the concentrations of free enzyme, enzyme-substrate complex, and product versus time in order to learn about the approach to steady state. By using a range of substrate concentrations and rate…
Descriptors: Kinetics, Biochemistry, Computer Uses in Education, Graphs
Peer reviewed Peer reviewed
Shindell, Dav M.; And Others – Journal of Chemical Education, 1978
Describes four cases for which simulation techniques can be used to analyze the kinetics of the chemical system. Included are series first-order and enzyme kinetics. (MA)
Descriptors: Chemistry, College Science, Higher Education, Kinetics
Peer reviewed Peer reviewed
Harsch, Gunther – Journal of Chemical Education, 1984
Proposes an approach to chemical kinetics and mechanism using statistical games, illustrating its use in monomolecular, catalytic, autocatalytic, consecutive, and equilibrium reactions. Major features of the games are also outlined and discussed. (JN)
Descriptors: Chemical Equilibrium, Chemical Reactions, Chemistry, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
DiLisi, Gregory A.; Rarick, Richard A. – Physics Teacher, 2006
In this paper we develop materials to address student interest in the Indian Ocean tsunami of December 2004. We discuss the physical characteristics of tsunamis and some of the specific data regarding the 2004 event. Finally, we create an easy-to-make tsunami tank to run simulations in the classroom. The simulations exhibit three dramatic…
Descriptors: Introductory Courses, Physics, Oceanography, Student Interests
Peer reviewed Peer reviewed
Kirksey, H. Graden; Jones, Richard F. – Journal of Chemical Education, 1988
Shows how video recordings of the Brownian motion of tiny particles may be made. Describes a classroom demonstration and cites a reported experiment designed to show the random nature of Brownian motion. Suggests a student experiment to discover the distance a tiny particle travels as a function of time. (MVL)
Descriptors: Chemical Nomenclature, Chemistry, College Science, Inorganic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Runge, Steven W.; Hill, Brent J. F.; Moran, William M. – CBE - Life Sciences Education, 2006
A new, simple classroom technique helps cell biology students understand principles of Michaelis-Menten enzyme kinetics. A student mimics the enzyme and the student's hand represents the enzyme's active site. The catalytic event is the transfer of marbles (substrate molecules) by hand from one plastic container to another. As predicted, increases…
Descriptors: Kinetics, Cytology, Biology, Biochemistry
Peer reviewed Peer reviewed
Ngoh-Khang, Goh; Lian-Sai, Ghia – Science Activities, 1992
Describes a simulation of chemical reactions to help students understand factors that affect the rates of chemical reactions. (PR)
Descriptors: Chemical Reactions, Chemistry, High Schools, Kinetic Molecular Theory
Peer reviewed Peer reviewed
Doerr, Helen M. – School Science and Mathematics, 1996
Investigates the construction of understanding of the motion of an object down an inclined plane which takes place through the process of model building in an integrated algebra, trigonometry, and physics class. Discusses four major themes related to student learning through modeling that emerged from the results. Discusses implications for…
Descriptors: Algebra, Cognitive Development, Computer Uses in Education, Educational Strategies