NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Christoph Hoyer; Raimund Girwidz – Physical Review Physics Education Research, 2024
Vector fields are a highly abstract physical concept that is often taught using visualizations. Although vector representations are particularly suitable for visualizing quantitative data, they are often confusing, especially when describing real fields such as magnetic and electric fields, as the vector arrows can overlap. The present study…
Descriptors: Science Instruction, Teaching Methods, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Campos, Esmeralda; Hernandez, Eder; Barniol, Pablo; Zavala, Genaro – Physical Review Physics Education Research, 2023
Identifying students' difficulties in understanding Gauss's and Ampere's laws is important for developing educational strategies that promote an expertlike understanding of the field concept and Maxwell's equations of electromagnetic phenomena. This study aims to analyze and compare students' understanding of symmetry when applying Gauss's and…
Descriptors: Scientific Principles, Teaching Methods, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Tillema, Erik S. – Mathematical Thinking and Learning: An International Journal, 2020
Two-hour long developmental teaching interviews were conducted with each of 14 sixth grade students, ages 11-12. The purposes of the interviews were to investigate how students solved arrangement problems (APs), and how their solutions of these problems differed from their solution of Cartesian product problems (CPPs). The 14 students represented…
Descriptors: Mathematics Instruction, Multiplication, Mathematical Concepts, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Maries, Alexandru; Brundage, Mary Jane; Singh, Chandralekha – Physical Review Physics Education Research, 2022
The Conceptual Survey of Electricity and Magnetism (CSEM) is a multiple-choice survey that contains a variety of electricity and magnetism concepts from Coulomb's law to Faraday's law at the level of introductory physics used to help inform instructors of student mastery of those concepts. Prior studies suggest that many concepts on the survey are…
Descriptors: Physics, Energy, Graduate Students, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Murata, Aki; Stewart, Chana – Teaching Children Mathematics, 2017
Effective use of mathematical representation is key to supporting student learning. In "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014), "use and connect mathematical representations" is one of the effective Mathematics Teaching Practices. By using different representations, students examine concepts…
Descriptors: Elementary School Mathematics, Elementary School Students, Grade 1, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Heckler, Andrew F.; Scaife, Thomas M. – Physical Review Special Topics - Physics Education Research, 2015
A small number of studies have investigated student understanding of vector addition and subtraction in generic or introductory physics contexts, but in almost all cases the questions posed were in the vector arrow representation. In a series of experiments involving over 1000 students and several semesters, we investigated student understanding…
Descriptors: Science Instruction, Physics, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Zuza, Kristina; Almudí, José-Manuel; Leniz, Ane; Guisasola, Jenaro – Physical Review Special Topics - Physics Education Research, 2014
In traditional teaching, the fundamental concepts of electromagnetic induction are usually quickly analyzed, spending most of the time solving problems in a more or less rote manner. However, physics education research has shown that the fundamental concepts of the electromagnetic induction theory are barely understood by students. This article…
Descriptors: Science Instruction, Scientific Concepts, Teaching Methods, Problem Solving
Peer reviewed Peer reviewed
Tompson, C. W.; Wragg, J. L. – Physics Teacher, 1991
A quantitative application of magnetic braking performed with an air track is described. The experimental measurement of the position of the glider as a function of time is calculated. (KR)
Descriptors: Electricity, Graphs, Higher Education, Introductory Courses
Ruiz, Ernest; And Others – TIES Magazine, 1991
Presented are classroom activities in which students explore the potential use of magnetic levitation for transportation purposes. The advantages of using a MagLev transportation system instead of conventional trains are discussed. Directions for designing and building a MagLev track and circuit are provided. (KR)
Descriptors: Environmental Education, Magnets, Problem Solving, Research and Development
Peer reviewed Peer reviewed
Talbot, Chris; And Others – School Science Review, 1991
Twenty science experiments are presented. Topics include recombinant DNA, physiology, nucleophiles, reactivity series, molar volume of gases, spreadsheets in chemistry, hydrogen bonding, composite materials, radioactive decay, magnetism, speed, charged particles, compression waves, heat transfer, Ursa Major, balloons, current, and expansion of…
Descriptors: Biology, Chemical Reactions, Chemistry, DNA
Peer reviewed Peer reviewed
Gabel, Dorothy; And Others – Science Teacher, 1992
Chemistry can be described on three levels: sensory, molecular, and symbolic. Proposes a particle approach to teaching chemistry that uses magnets to aid students construct molecular models and solve particle problems. Includes examples of Johnstone's model of chemistry phenomena, a problem worksheet, and a student concept mastery sheet. (MDH)
Descriptors: Chemistry, Cognitive Development, Concept Formation, Magnets
Geiger, Emily – 1990
The purpose of this project was to determine whether third grade students, given written directions and necessary materials, could work without teacher direction for 30 minutes. Students (N=25) were to gain skill and confidence in carrying out the processes required for completing an independent learning activity by completing science learning…
Descriptors: At Risk Persons, Cooperative Learning, Decision Making, Early Intervention
Howe, Robert W.; Disinger, John F. – 1990
The ability to think critically is essential if individuals are to live, work, and function effectively in our current and changing society. The activities included in this publication were selected to identify a variety of effective strategies for teaching critical thinking skills through environmental education. Activities include library…
Descriptors: Case Studies, Conservation (Environment), Cooperative Learning, Critical Thinking