NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ferreira, Annalize; Seyffert, Albertus S.; Lemmer, Miriam – Physics Education, 2017
Many students find it difficult to apply certain physics concepts to their daily lives. This is especially true when they perceive a principle taught in physics class as being in conflict with their experience. An important instance of this occurs when students are instructed to ignore the effect of air resistance when solving kinematics problems.…
Descriptors: Computer Graphics, Scientific Concepts, Physics, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Potratz, Jeffrey P. – Journal of Chemical Education, 2017
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Descriptors: Biochemistry, Kinetics, Computer Simulation, Courseware
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kopasz, Katalin; Makra, Péter; Gingl, Zoltán – Acta Didactica Napocensia, 2013
Experiments, as we all know, are especially important in science education. However, their impact on improving thinking could be even greater when applied together with the methods of inquiry-based learning (IBL). In this paper we present our observations of a high-school laboratory class where students used computers to carry out and analyse real…
Descriptors: Science Education, Science Experiments, Active Learning, Inquiry
Peer reviewed Peer reviewed
Brosnan, Tim – School Science Review, 1989
States that quantitative modelling allows teachers to concentrate more on qualitative understanding. Suggests the main benefits as (1) repetitive calculations are reduced allowing greater attention to be focused on underlying models; (2) more "what if" models can be tested; and (3) a wider variety of data can be used to test models. (MVL)
Descriptors: Chemical Equilibrium, Chemistry, College Science, Computer Graphics
Peer reviewed Peer reviewed
Gelpi, Josep Lluis; Domenech, Carlos – Biochemical Education, 1988
Describes a program which allows students to identify and characterize several kinetic inhibitory mechanisms. Uses the generic model of reversible inhibition of a monosubstrate enzyme but can be easily modified to run other models such as bisubstrate enzymes. Uses MS-DOS BASIC. (MVL)
Descriptors: Biochemistry, Chemical Reactions, College Science, Computer Graphics