Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 11 |
Descriptor
Computer Peripherals | 11 |
Science Instruction | 11 |
Teaching Methods | 11 |
Chemistry | 8 |
Molecular Structure | 6 |
Computer Software | 4 |
Hands on Science | 4 |
Printing | 4 |
Design | 3 |
Handheld Devices | 3 |
Measurement | 3 |
More ▼ |
Source
Journal of Chemical Education | 11 |
Author
Pinger, Cody W. | 2 |
Spence, Dana M. | 2 |
Balaji, B. S. | 1 |
Bram Bruininks | 1 |
Bullis, Ryan G. | 1 |
Castiaux, Andre | 1 |
Clapis, Julia R. | 1 |
Crowe, Charles D. | 1 |
Fogarty, Keir H. | 1 |
Geiger, Morgan K. | 1 |
Griffith, Kaitlyn M. | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Descriptive | 8 |
Reports - Evaluative | 2 |
Reports - Research | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Secondary Education | 3 |
High Schools | 2 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Teachers | 2 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Bram Bruininks; Ludo B. F. Juurlink – Journal of Chemical Education, 2022
We present the design of a periscope-type VIS spectrometer for educational purposes that combines strong features from various earlier designs and adds new ones. Three 3D-printed pieces that hold a small thin mirror sheet, a 1/8th wedge of a DVD, and two razor blades are easily assembled and facilitate insight into its construction. A new feature…
Descriptors: Computer Peripherals, Printing, Handheld Devices, Spectroscopy
Pinger, Cody W.; Geiger, Morgan K.; Spence, Dana M. – Journal of Chemical Education, 2020
Wide accessibility and a broad range of applications have made 3D-printers a commonplace tool in the science community. From tier-one research institutions to community public libraries and high schools, 3D-printers are being used to enrich STEM education through a variety of learning techniques and experiences. Reports of 3D-printed models for…
Descriptors: Computer Peripherals, Science Instruction, Teaching Methods, Visualization
Niece, Brian K. – Journal of Chemical Education, 2019
Models were prepared by 3D printing that can be used to demonstrate the operations required for the study of molecular symmetry. The models were designed to emphasize the order and locations of rotation axes and to clearly illustrate the more abstract reflection and improper rotation axes. The models were well-received by students in a course on…
Descriptors: Molecular Structure, Computer Peripherals, Science Instruction, Teaching Methods
Gunderson, Julie E. C.; Mitchell, Dylan W.; Bullis, Ryan G.; Steward, John Q.; Gunderson, William A. – Journal of Chemical Education, 2020
Fused filament fabrication 3D printing is a process by which three-dimensional objects are created by depositing layers of a material onto a hard, flat surface by a robot. It is often referred to as an "additive manufacturing" technique because material is added in successive layers to create an object. Because many scientific…
Descriptors: Chemistry, Science Instruction, Computer Software, Computer Peripherals
Savchenkov, Anton V. – Journal of Chemical Education, 2020
Sets of models of molecules (which are of interest for teaching molecular structure, symmetry, and related topics in many chemical disciplines) were prepared and made available either for self-directed 3D-printing or through the 3D-printing company Shapeways providing 3D-printing as a service. This allows teachers to save time on searching for…
Descriptors: Computer Peripherals, Printing, Hands on Science, Manipulative Materials
Singhal, Ishu; Balaji, B. S. – Journal of Chemical Education, 2020
An open-source repository of basic building block models design files for writing chemical formulas, equations, and ionic states are provided. Writing chemical symbols, molecules, and ions in their correct oxidation state or valency in chemical equations is an essential and integral part of learning. For a visually impaired student, it is very…
Descriptors: Chemistry, Science Education, Nuclear Physics, Molecular Structure
Crowe, Charles D.; Hendrickson-Stives, Albanie K.; Kuhn, Stephanie L.; Jackson, Jennifer B.; Keating, Christine D. – Journal of Chemical Education, 2021
The interaction between water and surfaces is observed in our daily lives and is used in laboratories to study materials properties, such as interfacial tension. Making the connection between fundamental scientific phenomena and everyday observations is a powerful method of highlighting the importance and relevance of science to the K-12…
Descriptors: Middle School Students, Secondary School Science, Chemistry, Design
Pinger, Cody W.; Castiaux, Andre; Speed, Savannah; Spence, Dana M. – Journal of Chemical Education, 2018
Plasma protein binding measurements are an important aspect of pharmacology and drug development. Therefore, performing these measurements can provide a valuable and highly practical learning experience for students across many scientific disciplines. Here, we describe the design and characterization of a 3D-printed device capable of performing…
Descriptors: Chemistry, Science Instruction, Computer Peripherals, Pharmacology
de Cataldo, Riccardo; Griffith, Kaitlyn M.; Fogarty, Keir H. – Journal of Chemical Education, 2018
Introductory chemistry students encounter the concept of hybrid orbitals as a transition from atomic orbitals to molecular bonding. The principal purpose of learning hybridization in the undergraduate curriculum is to impart an understanding of the origins of molecular bonding and geometry. Physical models of both individual hybrid orbitals and…
Descriptors: Introductory Courses, Science Instruction, Visualization, Molecular Structure
Kovarik, Michelle L.; Clapis, Julia R.; Romano-Pringle, K. Ana – Journal of Chemical Education, 2020
One challenge of teaching chemical analysis is the proliferation of sophisticated, but often impenetrable, instrumentation in the modern laboratory. Complex instruments, and the software that runs them, distance students from the physical and chemical processes that generate the analytical signal. A solution to this challenge is the introduction…
Descriptors: Spectroscopy, Science Instruction, Teaching Methods, Science Laboratories
Scalfani, Vincent F.; Vaid, Thomas P. – Journal of Chemical Education, 2014
Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…
Descriptors: Computer Peripherals, Educational Technology, Technology Uses in Education, Science Instruction