Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 2 |
Descriptor
Source
| For the Learning of… | 4 |
Publication Type
| Journal Articles | 4 |
| Reports - Evaluative | 2 |
| Guides - Classroom - Teacher | 1 |
| Opinion Papers | 1 |
| Reports - Research | 1 |
Education Level
| Early Childhood Education | 1 |
| Elementary Education | 1 |
| Grade 2 | 1 |
| Primary Education | 1 |
Audience
| Practitioners | 1 |
| Researchers | 1 |
| Teachers | 1 |
Location
| Norway | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Rumbelow, Michael – For the Learning of Mathematics, 2021
"Where Mathematics Comes From" (Lakoff & Núñez 2000) proposed that mathematical concepts such as arithmetic and counting are constructed cognitively from embodied metaphors of actions on physical objects, and four actions, or 'grounding metaphors' in particular: collecting, stepping, constructing and measuring. This article argues…
Descriptors: Arithmetic, Mathematics Instruction, Mathematical Concepts, Figurative Language
Fosse, Trude; Meaney, Tamsin – For the Learning of Mathematics, 2020
In Norway, children are encouraged to pose a problem that they can solve using an arithmetical calculation. This is known as 'regnefortelling'. During a larger project, we became interested in a small group of "regnefortelling" which used unusual contexts, contexts that made us uneasy and invoked a feeling of uncertainty about how we…
Descriptors: Foreign Countries, Problem Solving, Teaching Methods, Mathematics Instruction
Peer reviewedFielker, David S. – For the Learning of Mathematics, 1986
How children perceive doubling and halving numbers is discussed, with many examples. The use of calculators is integrated. The tendency to avoid division if other ways of solving a problem can be found was noted. (MNS)
Descriptors: Calculators, Cognitive Processes, Computation, Division
Peer reviewedNesher, Pearla – For the Learning of Mathematics, 1986
The conceptual difference between understanding and algorithmic performance is examined first. Then some dilemmas that flow from these distinctions are discussed. (MNS)
Descriptors: Algorithms, Cognitive Processes, Computation, Decimal Fractions

Direct link
