NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta, Shiv K.; Szymanski, Waclaw – College Mathematics Journal, 2010
If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.
Descriptors: Mathematics Instruction, Mathematical Formulas, Graphs, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
DeTemple, Duane – College Mathematics Journal, 2010
Purely combinatorial proofs are given for the sum of squares formula, 1[superscript 2] + 2[superscript 2] + ... + n[superscript 2] = n(n + 1) (2n + 1) / 6, and the sum of sums of squares formula, 1[superscript 2] + (1[superscript 2] + 2[superscript 2]) + ... + (1[superscript 2] + 2[superscript 2] + ... + n[superscript 2]) = n(n + 1)[superscript 2]…
Descriptors: College Mathematics, Mathematics Instruction, Mathematical Formulas, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Richmond, Bettina – College Mathematics Journal, 2010
It seems rather surprising that any given polynomial p(x) with nonnegative integer coefficients can be determined by just the two values p(1) and p(a), where a is any integer greater than p(1). This result has become known as the "perplexing polynomial puzzle." Here, we address the natural question of what might be required to determine a…
Descriptors: Numbers, Graphing Calculators, Thinking Skills, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Hoensch, Ulrich A. – College Mathematics Journal, 2009
We explore how curvature and torsion determine the shape of a curve via the Frenet-Serret formulas. The connection is made explicit using the existence of solutions to ordinary differential equations. We use a paperclip as a concrete, visual example and generate its graph in 3-space using a CAS. We also show how certain physical deformations to…
Descriptors: Equations (Mathematics), Calculus, Geometric Concepts, Mathematics Instruction