Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 11 |
| Since 2007 (last 20 years) | 22 |
Descriptor
| Problem Solving | 39 |
| Teaching Methods | 39 |
| Chemical Engineering | 26 |
| Engineering Education | 22 |
| College Science | 15 |
| Higher Education | 13 |
| Science Education | 11 |
| Thermodynamics | 10 |
| Chemistry | 9 |
| Computation | 9 |
| Science Instruction | 9 |
| More ▼ | |
Source
| Chemical Engineering Education | 39 |
Author
| Foley, Greg | 2 |
| Woods, Donald R. | 2 |
| Amyotte, Paul R. | 1 |
| Anderson, Brian J. | 1 |
| Benson, Tracy J. | 1 |
| Bernardo, Fernando P. | 1 |
| Biasca, Karyn | 1 |
| Biernacki, J. J. | 1 |
| Christopher V. H.-H. Chen | 1 |
| Clay, John D. | 1 |
| Collins, Eric | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 37 |
| Reports - Descriptive | 22 |
| Guides - Classroom - Teacher | 7 |
| Reports - Evaluative | 4 |
| Reports - Research | 4 |
Education Level
| Higher Education | 19 |
| Postsecondary Education | 15 |
Audience
| Teachers | 10 |
| Practitioners | 9 |
| Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Shiv Krishna Madi Reddy; Meng Guo; Long Cai; Ralph E. White – Chemical Engineering Education, 2024
A method is presented which can be used to obtain analytical solutions for boundary value problems (BVPs) using the matrix exponential and Maple. Systems of second order, linear differential equations are expressed as two or more first order equations in matrix form, and their solutions are obtained using the matrix exponential, matrix…
Descriptors: Chemical Engineering, Engineering Education, Computer Software, Mathematics Instruction
Robert J. Fisher – Chemical Engineering Education, 2025
Strategies are proposed that promote use of an Integrated Applied Mathematics (IAM) approach to enhance teaching of advanced problem-solving and analysis skills. Three scenarios of 1-dimensional transport processes are presented that support using Error Function analyses when considering short time/small penetration depths in finite geometries.…
Descriptors: Chemical Engineering, Mathematics, Problem Solving, Skill Development
Christopher V. H.-H. Chen; Scott Banta – Chemical Engineering Education, 2023
As more chemical engineering students enter careers beyond the field, students need more guidance in applying their problem solving skills to a challenges beyond the plant or refinery. Since Fall 2019, we have implemented case-based learning across our Material and Energy Balances course to help students practice chemical engineering thinking as a…
Descriptors: Teaching Methods, Chemical Engineering, Engineering Education, Problem Solving
Ó Súilleabháin, Cilian; Foley, Greg – Chemical Engineering Education, 2019
Membrane separation processes, from reverse osmosis to ultrafiltration to microfiltration, are gradually receiving more and more emphasis in undergraduate chemical engineering curricula. Of these processes, ultrafiltration tends to be the most amenable to the standard chemical engineering approach of theory development, mass and/or energy…
Descriptors: Chemical Engineering, Engineering Education, Teaching Methods, Undergraduate Students
Nagma Zerin – Chemical Engineering Education, 2024
Project-Enhanced learning is an excellent way to facilitate student-centered learning along with traditional lecture-based learning. In this Class and Home problem, an example of Project-Enhanced learning is provided that can be used in the Mass and Energy Balances (MEB) course. The students solve this problem as part of a group while receiving…
Descriptors: Student Projects, Active Learning, Student Centered Learning, Teaching Methods
Felse, P. Arthur – Chemical Engineering Education, 2018
Cross-disciplinary fields such as biotechnology require chemical engineers and non-engineers to routinely work together, thus creating a need for non-engineers to learn chemical engineering. But limited knowledge on non-engineers' learning preferences and the lack of pedagogical methods to teach non-engineers restricts the opportunities available…
Descriptors: Biotechnology, Mechanics (Physics), Teaching Methods, Engineering Education
Jarboe, Laura R. – Chemical Engineering Education, 2019
Undergraduate students taking the Material and Energy Balance course often comment on (a) having a desire to know more about what kinds of problems chemical engineers working in industry address; and (b) feeling that in-class examples and homework problems do not address real-world problems. This case study, used in the Material and Energy Balance…
Descriptors: Undergraduate Students, Chemical Engineering, Concept Formation, Scientific Concepts
O'Connell, John P. – Chemical Engineering Education, 2019
Thermodynamics challenges teachers and learners. Its pervasiveness about nature, mathematical abstractness, nonnumerical relations, and complexity in applications can inhibit understanding and usage, especially by undergraduates. Perspectives are given about these obstacles, and some suggestions are made to enhance comprehension of the discipline.
Descriptors: Thermodynamics, Science Instruction, Teaching Methods, Barriers
Clay, John D.; Collins, Eric – Chemical Engineering Education, 2020
Generating a problem that addresses multiple course learning objectives can be a challenging, but worthwhile exercise for a professor. These types of problems are particularly useful late in a course to help students tie together seemingly disparate concepts to solve an integrated problem that requires them to review concepts mastered throughout…
Descriptors: Smoking, Electronic Equipment, Educational Objectives, Teaching Methods
Hirshfield, Laura J.; Mayes, Heather B. – Chemical Engineering Education, 2019
With the advance of engineering education research and scholarship, there has been an increased focus on amending chemical engineering courses to increase student learning, engagement and enjoyment. These approaches are often incorporated in project-based courses such as capstone design courses and laboratory courses, providing opportunities to…
Descriptors: Undergraduate Students, Chemical Engineering, Engineering Education, Inclusion
Immethun, Cheryl M.; Daher, Tareq; Saha, Rajib – Chemical Engineering Education, 2019
The use of active learning techniques in engineering classrooms has been limited despite substantial evidence supporting their efficacy in helping students construct problem-solving expertise. A blended classroom, which combines online and in-class learning, was employed in a Chemical Engineering Computation class to address instructional…
Descriptors: Science Instruction, Teaching Methods, Chemical Engineering, Blended Learning
Teppaitoon, Wittaya – Chemical Engineering Education, 2016
This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…
Descriptors: Spreadsheets, Courseware, Problem Solving, Computation
Foley, Greg – Chemical Engineering Education, 2016
Novel analytical solutions based on the Lambert W function for two problems in ultrafiltration and diafiltration are described. Example problems, suitable for incorporation into an introductory module in unit operations, membrane processing, or numerical methods are provided in each case.
Descriptors: Introductory Courses, Units of Study, Learning Modules, Demonstrations (Educational)
Biernacki, J. J. – Chemical Engineering Education, 2016
The degrees of freedom (DOF) concept is a powerful tool that has been taught since at least the '70s in undergraduate curriculum, typically introduced in the context of a first course on material and energy balances. The concept, however, has not been widely applied beyond the material balance domain and in general is not taught as a unified…
Descriptors: Concept Teaching, Scientific Concepts, Teaching Methods, Instructional Effectiveness
Wen, Fei; Khera, Eshita – Chemical Engineering Education, 2016
Despite the instinctive perception of mass and heat transfer principles in daily life, productive learning in this course continues to be one of the greatest challenges for undergraduate students in chemical engineering. In an effort to enhance student learning in classroom, we initiated an innovative active-learning method titled…
Descriptors: Active Learning, Heat, Thermodynamics, Student Developed Materials

Peer reviewed
Direct link
