NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of…1
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona; Qi, Wanxue – International Journal of Educational Technology in Higher Education, 2023
The temporal sequence of learning behavior is multidimensional and continuous in MOOCs. On the one hand, it supports personalized learning methods, achieves flexible time and space. On the other hand, it also makes MOOCs produce a large number of dropouts and incomplete learning behaviors. Dropout prediction and decision feedback have become an…
Descriptors: MOOCs, Dropouts, Prediction, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khajonmote, Withamon; Chinsook, Kittipong; Klintawon, Sununta; Sakulthai, Chaiyan; Leamsakul, Wicha; Jansawang, Natchanok; Jantakoon, Thada – Journal of Education and Learning, 2022
The system architecture of big data in massive open online courses (BD-MOOCs System Architecture) is composed of six components. The first component was comprised of big data tools and technologies such as Hadoop, YARN, HDFS, Spark, Hive, Sqoop, and Flume. The second component was educational data science, which is composed of the following four…
Descriptors: MOOCs, Data Collection, Student Behavior, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Abdullahi Yusuf; Norah Md Noor; Shamsudeen Bello – Education and Information Technologies, 2024
Studies examining students' learning behavior predominantly employed rich video data as their main source of information due to the limited knowledge of computer vision and deep learning algorithms. However, one of the challenges faced during such observation is the strenuous task of coding large amounts of video data through repeated viewings. In…
Descriptors: Learning Analytics, Student Behavior, Video Technology, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
El Aouifi, Houssam; El Hajji, Mohamed; Es-Saady, Youssef; Douzi, Hassan – Education and Information Technologies, 2021
This paper analyzes how learners interact with the pedagogical sequences of educational videos, and its effect on their performance. In this study, the suggested video courses are segmented on several pedagogical sequences. In fact, we're not focusing on the type of clicks made by learners, but we're concentrating on the pedagogical sequences in…
Descriptors: Video Technology, Student Behavior, Prediction, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Mubarak, Ahmed Ali; Cao, Han; Ahmed, Salah A. M. – Education and Information Technologies, 2021
Analysis of learning behavior of MOOC enthusiasts has become a posed challenge in the Learning Analytics field, which is especially related to video lecture data, since most learners watch the same online lecture videos. It helps to conduct a comprehensive analysis of such behaviors and explore various learning patterns for learners and predict…
Descriptors: Learning Analytics, Online Courses, Video Technology, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Yao; Zhan, Zehui – Interactive Technology and Smart Education, 2023
Purpose: The purpose of this study is to set up an evaluation model to predict massive open online courses (MOOC) learning performance by analyzing MOOC learners' online learning behaviors, and comparing three algorithms -- multiple linear regression (MLR), multilayer perceptron (MLP) and classification and regression tree (CART).…
Descriptors: MOOCs, Online Courses, Learning Analytics, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Du, Xiaoming; Ge, Shilun; Wang, Nianxin – International Journal of Information and Communication Technology Education, 2022
In the context of education big data, it uses data mining and learning analysis technology to accurately predict and effectively intervene in learning. It is helpful to realize individualized teaching and individualized teaching. This research analyzes student life behavior data and learning behavior data. A model of student behavior…
Descriptors: Prediction, Data, Student Behavior, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Yangyang Luo; Xibin Han; Chaoyang Zhang – Asia Pacific Education Review, 2024
Learning outcomes can be predicted with machine learning algorithms that assess students' online behavior data. However, there have been few generalized predictive models for a large number of blended courses in different disciplines and in different cohorts. In this study, we examined learning outcomes in terms of learning data in all of the…
Descriptors: Prediction, Learning Management Systems, Blended Learning, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Ean Teng Khor; Dave Darshan – International Journal of Information and Learning Technology, 2024
Purpose: This study leverages social network analysis (SNA) to visualise the way students interacted with online resources and uses the data obtained from SNA as features for supervised machine learning algorithms to predict whether a student will successfully complete a course. Design/methodology/approach: The exploration and visualisation of the…
Descriptors: Prediction, Academic Achievement, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Susnjak, Teo; Ramaswami, Gomathy Suganya; Mathrani, Anuradha – International Journal of Educational Technology in Higher Education, 2022
This study investigates current approaches to learning analytics (LA) dashboarding while highlighting challenges faced by education providers in their operationalization. We analyze recent dashboards for their ability to provide actionable insights which promote informed responses by learners in making adjustments to their learning habits. Our…
Descriptors: Learning Analytics, Computer Interfaces, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denis Zhidkikh; Ville Heilala; Charlotte Van Petegem; Peter Dawyndt; Miitta Jarvinen; Sami Viitanen; Bram De Wever; Bart Mesuere; Vesa Lappalainen; Lauri Kettunen; Raija Hämäläinen – Journal of Learning Analytics, 2024
Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first…
Descriptors: Learning Analytics, Prediction, School Holding Power, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mohd Fazil; Angelica Rísquez; Claire Halpin – Journal of Learning Analytics, 2024
Technology-enhanced learning supported by virtual learning environments (VLEs) facilitates tutors and students. VLE platforms contain a wealth of information that can be used to mine insight regarding students' learning behaviour and relationships between behaviour and academic performance, as well as to model data-driven decision-making. This…
Descriptors: Learning Analytics, Learning Management Systems, Learning Processes, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Oliveira, Wilk; Tenório, Kamilla; Hamari, Juho; Pastushenko, Olena; Isotani, Seiji – Smart Learning Environments, 2021
The flow experience (i.e., challenge-skill balance, action-awareness merging, clear goals, unambiguous feedback, concentration, sense of control, loss of self-consciousness, transformation of time, and "autotelic" experience) is an experience highly related to the learning experience. One of the current challenges is to identify whether…
Descriptors: Prediction, Psychological Patterns, Learning Processes, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khor, Ean Teng; Dave, Darshan – International Review of Research in Open and Distributed Learning, 2022
The COVID-19 pandemic induced a digital transformation of education and inspired both instructors and learners to adopt and leverage technology for learning. This led to online learning becoming an important component of the new normal, with home-based virtual learning an essential aspect for learners on various levels. This, in turn, has caused…
Descriptors: Learning Analytics, Social Networks, Network Analysis, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Pei, Bo; Xing, Wanli – Journal of Educational Computing Research, 2022
This paper introduces a novel approach to identify at-risk students with a focus on output interpretability through analyzing learning activities at a finer granularity on a weekly basis. Specifically, this approach converts the predicted output from the former weeks into meaningful probabilities to infer the predictions in the current week for…
Descriptors: At Risk Students, Learning Analytics, Information Retrieval, Models
Previous Page | Next Page »
Pages: 1  |  2