NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Christopher C. Y.; Ogata, Hiroaki – Education and Information Technologies, 2023
The application of student interaction data is a promising field for blended learning (BL), which combines conventional face-to-face and online learning activities. However, the application of online learning technologies in BL settings is particularly challenging for students with lower self-regulatory abilities. In this study, a personalized…
Descriptors: Individualized Instruction, Learning Analytics, Intervention, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Brown, Alice; Lawrence, Jill; Basson, Marita; Axelsen, Megan; Redmond, Petrea; Turner, Joanna; Maloney, Suzanne; Galligan, Linda – Active Learning in Higher Education, 2023
Combining nudge theory with learning analytics, 'nudge analytics', is a relatively recent phenomenon in the educational context. Used, for example, to address such issues as concerns with student (dis)engagement, nudging students to take certain action or to change a behaviour towards active learning, can make a difference. However, knowing who to…
Descriptors: Online Courses, Learner Engagement, Learning Analytics, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia; Wanxue Qi – European Journal of Education, 2025
Massive Open Online Courses (MOOCs) effectively support online learning behaviour; while constructing a sustainable learning process, MOOCs have also formed the social network. In addition, learners' burnout state has become a serious obstacle to the development and promotion of MOOCs. This study analyzes the potential social behaviour associated…
Descriptors: MOOCs, Burnout, Social Behavior, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Du, Xiaoming; Ge, Shilun; Wang, Nianxin – International Journal of Information and Communication Technology Education, 2022
In the context of education big data, it uses data mining and learning analysis technology to accurately predict and effectively intervene in learning. It is helpful to realize individualized teaching and individualized teaching. This research analyzes student life behavior data and learning behavior data. A model of student behavior…
Descriptors: Prediction, Data, Student Behavior, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Karaoglan Yilmaz, Fatma Gizem; Yilmaz, Ramazan – Technology, Knowledge and Learning, 2022
One of the main problems encountered in the online learning process is the low or absence of students' engagement. They may face problems with behavioral engagement, cognitive engagement, emotional engagement in online learning environments. It is thought that the problems related to students' engagements can be overcome with personalized…
Descriptors: Learning Analytics, Intervention, Learner Engagement, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Kam Hong Shum; Samuel Kai Wah Chu; Cheuk Yu Yeung – Interactive Learning Environments, 2023
This study examines the use of data analytics to evaluate students' behaviours during their participation in an online collaborative learning environment called SkyApp. To visualise the learning traits of engagement, emotion and motivation, students' inputs and activity data were captured and quantified for analysis. Experiments were first carried…
Descriptors: Student Behavior, Online Courses, Cooperative Learning, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kay, Ellie; Bostock, Paul – Student Success, 2023
Providing timely nudges to students has been shown to improve engagement and persistence in tertiary education. However, many studies focus on small-scale pilots rather than institution-wide initiatives. This article assesses the impact of a pan-institution Early Alert System at the University of Canterbury that utilises nudging when students are…
Descriptors: At Risk Students, Learner Engagement, Undergraduate Students, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
van Leeuwen, Anouschka – Educational Technology Research and Development, 2019
The flipped classroom model is a form of blended learning in which delivery of content occurs with online materials, and face-to-face meetings are used for teacher-guided practice. It is important that teachers stay up to date with the activities students engage in, which may be accomplished with the help of learning analytics (LA). This study…
Descriptors: Teacher Attitudes, Usability, Learning Analytics, Blended Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Jia-Hua; Zou, Liu-cong; Miao, Jia-jia; Zhang, Ye-Xing; Hwang, Gwo-Jen; Zhu, Yue – Interactive Learning Environments, 2020
Extensive studies have been conducted to diagnose and predict students' academic performance by analyzing a large amount of data related to their learning behaviors in a blended learning environment. But there is a lack of research examining how individualized learning interventions could improve students' academic performance in such a learning…
Descriptors: Individualized Instruction, Academic Achievement, Interaction, Blended Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jill Lawrence; Alice Brown; Petrea Redmond; Marita Basson – Student Success, 2019
Universities increasingly implement online delivery to strengthen students' access and flexibility. However, they often do so with limited understanding of the impact of online pedagogy on student engagement. To explore these issues, a research project was conducted investigating the use of course-specific learning analytics to 'nudge' students…
Descriptors: Learner Engagement, Learning Analytics, Data Use, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Wan, Han; Zhong, Zihao; Tang, Lina; Gao, Xiaopeng – IEEE Transactions on Learning Technologies, 2023
Small private online courses (SPOCs) have influenced teaching and learning in China's higher education. Learning management systems (LMSs) are important components in SPOCs. They can collect various data related to student behavior and support pedagogical interventions. This research used feature engineering and nearest neighbor smoothing models…
Descriptors: Online Courses, Learning Management Systems, Higher Education, Student Behavior