NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…22
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Juan D. Pinto; Luc Paquette – International Educational Data Mining Society, 2025
The increasing use of complex machine learning models in education has led to concerns about their interpretability, which in turn has spurred interest in developing explainability techniques that are both faithful to the model's inner workings and intelligible to human end-users. In this paper, we describe a novel approach to creating a…
Descriptors: Artificial Intelligence, Technology Uses in Education, Student Behavior, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pranjli Khanna; Kaleb Mathieu; Kole Norberg; Husni Almoubayyed; Stephen E. Fancsali – International Educational Data Mining Society, 2025
Recent research on more comprehensive models of student learning in adaptive math learning software used an indicator of student reading ability to predict students' tendencies to engage in behaviors associated with so-called "gaming the system." Using data from Carnegie Learning's MATHia adaptive learning software, we replicate the…
Descriptors: Computer Software, Computer Uses in Education, Reading Difficulties, Reading Skills
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhou, Yiqiu; Kang, Jina – International Educational Data Mining Society, 2022
The complex and dynamic nature of collaboration makes it challenging to find indicators of productive learning and quality collaboration. This exploratory study developed a collaboration metric to capture temporal patterns of joint attention (JA) based on log files generated as students interacted with an immersive astronomy simulation using…
Descriptors: Astronomy, Problem Solving, Science Instruction, Cooperative Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Andrews-Todd, Jessica; Forsyth, Carol; Steinberg, Jonathan; Rupp, André – International Educational Data Mining Society, 2018
In this paper, we describe a theoretically-grounded data mining approach to identify types of collaborative problem solvers based on students' interactions with an online simulation-based task about electronics concepts. In our approach, we developed an ontology to identify the theoretically-grounded features of collaborative problem solving…
Descriptors: Problem Solving, Cooperation, Student Behavior, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wampfler, Rafael; Emch, Andreas; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2020
Front camera data from tablets used in educational settings offer valuable clues to student behavior, attention, and affective state. Due to the camera's angle of view, the face of the student is partially occluded and skewed. This hinders the ability of experts to adequately capture the learning process and student states. In this paper, we…
Descriptors: Photography, Handheld Devices, Student Behavior, Affective Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ng, Kelvin H. R.; Hartman, Kevin; Liu, Kai; Khong, Andy W. H. – International Educational Data Mining Society, 2016
During the semester break, 36 second-grade students accessed a set of resources and completed a series of online math activities focused on the application of the model method for arithmetic in two contexts 1) addition/subtraction and 2) multiplication/division. The learning environment first modeled and then supported the use of a scripted series…
Descriptors: Word Problems (Mathematics), Mathematics Instruction, Arithmetic, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bauer, Aaron; Flatten, Jeff; Zoran Popovic – International Educational Data Mining Society, 2017
Problem-solving skills in creative, open-ended domains are both important and little understood. These domains are generally ill-structured, have extremely large exploration spaces, and require high levels of specialized skill in order to produce quality solutions. We investigate problem-solving behavior in one such domain, the…
Descriptors: Problem Solving, Science Instruction, Cooperative Learning, Visualization
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Binglin; West, Matthew; Ziles, Craig – International Educational Data Mining Society, 2018
This paper attempts to quantify the accuracy limit of "nextitem-correct" prediction by using numerical optimization to estimate the student's probability of getting each question correct given a complete sequence of item responses. This optimization is performed without an explicit parameterized model of student behavior, but with the…
Descriptors: Accuracy, Probability, Student Behavior, Test Items
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Shitian; Chi, Min – International Educational Data Mining Society, 2017
One of the most challenging tasks in the field of Educational Data Mining (EDM) is to cluster students directly based on system-student sequential moment-to-moment interactive trajectories. The objective of this study is to build a general temporal clustering framework that captures the distinct characteristics of students' sequential behaviors…
Descriptors: Sequential Approach, Cluster Grouping, Interaction, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Malkiewich, Laura; Baker, Ryan S.; Shute, Valerie; Kai, Shimin; Paquette, Luc – International Educational Data Mining Society, 2016
Educational games have become hugely popular, and educational data mining has been used to predict student performance in the context of these games. However, models built on student behavior in educational games rarely differentiate between the types of problem solving that students employ and fail to address how efficacious student problem…
Descriptors: Classification, Problem Solving, Educational Games, Models
Castro, Francisco Enrique Vicente; Adjei, Seth; Colombo, Tyler; Heffernan, Neil – International Educational Data Mining Society, 2015
A great deal of research in educational data mining is geared towards predicting student performance. Bayesian Knowledge Tracing, Performance Factors Analysis, and the different variations of these have been introduced and have had some success at predicting student knowledge. It is worth noting, however, that very little has been done to…
Descriptors: Models, Student Behavior, Intelligent Tutoring Systems, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lu, Yihan; Hsiao, I-Han – International Educational Data Mining Society, 2016
Online programming discussion forums have grown increasingly and have formed sizable repositories of problem solving-solutions. In this paper, we investigate programming learners' information seeking behaviors from online discussion forums. We design engines to collect students' information seeking processes, including query formulation,…
Descriptors: Programming, Advanced Students, Reading Processes, Computer Mediated Communication
Wan, Hao; Beck, Joseph Barbosa – International Educational Data Mining Society, 2015
The phenomenon of wheel spinning refers to students attempting to solve problems on a particular skill, but becoming stuck due to an inability to learn the skill. Past research has found that students who do not master a skill quickly tend not to master it at all. One question is why do students wheel spin? A plausible hypothesis is that students…
Descriptors: Skill Development, Problem Solving, Knowledge Level, Learning Processes
Ye, Cheng; Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam – International Educational Data Mining Society, 2015
This paper discusses Multi-Feature Hierarchical Sequential Pattern Mining, MFH-SPAM, a novel algorithm that efficiently extracts patterns from students' learning activity sequences. This algorithm extends an existing sequential pattern mining algorithm by dynamically selecting the level of specificity for hierarchically-defined features…
Descriptors: Learning Activities, Learning Processes, Data Collection, Student Behavior
Jiang, Yang; Paquette, Luc; Baker, Ryan S.; Clarke-Midura, Jody – International Educational Data Mining Society, 2015
Inquiry skills are an important part of science education standards. There has been particular interest in verifying that these skills can transfer across domains and instructional contexts [4,15,16]. In this paper, we study transfer of inquiry skills, and the effects of prior practice of inquiry skills, using data from over 2000 middle school…
Descriptors: Performance Based Assessment, Virtual Classrooms, Comparative Analysis, Novices
Previous Page | Next Page »
Pages: 1  |  2