NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 211 to 225 of 229 results Save | Export
Nevitt, Jonathan – 2000
Structural equation modeling (SEM) attempts to remove the negative influence of measurement error and allows for investigation of relationships at the level of the underlying constructs of interest. SEM has been regarded as a "large sample" technique since its inception. Recent developments in SEM, some of which are currently available…
Descriptors: Error of Measurement, Goodness of Fit, Maximum Likelihood Statistics, Monte Carlo Methods
Peer reviewed Peer reviewed
Meredith, William; Tisak, John – Psychometrika, 1990
A model based on latent trait theory, with maximum likelihood parameter estimates and associated asymptotic tests, is presented. Latent curve analysis is a method for representing development and is an alternative to repeated measures analysis of variance and first-order auto-regressive models. (SLD)
Descriptors: Analysis of Variance, Estimation (Mathematics), Item Response Theory, Mathematical Models
Jo, See-Heyon – 1995
The question of how to analyze unbalanced hierarchical data generated from structural equation models has been a common problem for researchers and analysts. Among difficulties plaguing statistical modeling are estimation bias due to measurement error and the estimation of the effects of the individual's hierarchical social milieu. This paper…
Descriptors: Algorithms, Bayesian Statistics, Equations (Mathematics), Error of Measurement
Peer reviewed Peer reviewed
Anderson, Ronald D. – Structural Equation Modeling, 1996
Goodness of fit indexes developed by R. P. McDonald (1989) and Satorra-Bentler scale correction methods (A. Satorra and P. M. Bentler, 1988) were studied. The Satorra-Bentler index is shown to have the least error under each distributional misspecification level when the model has correct structural specification. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Goodness of Fit, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
McQuitty, Shaun – Structural Equation Modeling, 1997
LISREL 8 invokes a ridge option when maximum likelihood or generalized least squares are used to estimate a structural equation model with a nonpositive definite covariance or correlation matrix. Implications of the ridge option for model fit, parameter estimates, and standard errors are explored through two examples. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Goodness of Fit, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Gold, Michael S.; Bentler, Peter M.; Kim, Kevin H. – Structural Equation Modeling: A Multidisciplinary Journal, 2003
This article describes a Monte Carlo study of 2 methods for treating incomplete nonnormal data. Skewed, kurtotic data sets conforming to a single structured model, but varying in sample size, percentage of data missing, and missing-data mechanism, were produced. An asymptotically distribution-free available-case (ADFAC) method and structured-model…
Descriptors: Monte Carlo Methods, Computation, Sample Size, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Structural equation models are widely appreciated in social-psychological research and other behavioral research to model relations between latent constructs and manifest variables and to control for measurement error. Most applications of SEMs are based on fully observed continuous normal data and models with a linear structural equation.…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Item Response Theory, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Hayashi, Kentaro; Arav, Marina – Educational and Psychological Measurement, 2006
In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…
Descriptors: Bayesian Statistics, Factor Analysis, Correlation, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2005
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Descriptors: Structural Equation Models, Simulation, Computation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Fox, John – Structural Equation Modeling: A Multidisciplinary Journal, 2006
R is free, open-source, cooperatively developed software that implements the S statistical programming language and computing environment. The current capabilities of R are extensive, and it is in wide use, especially among statisticians. The sem package provides basic structural equation modeling facilities in R, including the ability to fit…
Descriptors: Structural Equation Models, Computer Software, Least Squares Statistics, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Hipp, John R.; Bauer, Daniel J. – Psychological Methods, 2006
Finite mixture models are well known to have poorly behaved likelihood functions featuring singularities and multiple optima. Growth mixture models may suffer from fewer of these problems, potentially benefiting from the structure imposed on the estimated class means and covariances by the specified growth model. As demonstrated here, however,…
Descriptors: Monte Carlo Methods, Maximum Likelihood Statistics, Computation, Case Studies
Wang, Lin; And Others – 1995
Research in structured equation modeling (SEM) suggests that nonnormal data will invalidate chi-square tests and produce erroneous standard errors. However, much remains unknown about the extent to which, and the conditions under which nonnormal data can affect SEM application, especially when excessive skewness and kurtosis are present in data.…
Descriptors: Behavior Patterns, Chi Square, Children, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Robila, Mihaela; Krishnakumar, Ambika – Children & Society, 2004
This study examines the additive effect of attitudes towards gender roles and importance of marriage on the centrality of children in seven East European countries: Bulgaria, Czech Republic, the former East Germany, Hungary, Poland, Russia, and Slovenia using the data from the 1994 International Social Science Survey (ISSP). Results support…
Descriptors: Surveys, Children, Sex Role, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Zimmer-Gembeck, Melanie J.; Chipuer, Heather M.; Hanisch, Michelle; Creed, Peter A.; McGregor, Leanne – Journal of Adolescence, 2006
Guided by Self-Determination and associated theories, we examined whether adolescent (N=324, Mage=15, 52% female) competence (academic engagement and achievement) were supported by relationships at school and school fit. Aspects of relationships and school fit that were measured included adolescents' perceptions of each context as promoting…
Descriptors: Intervals, Structural Equation Models, Academic Achievement, Self Determination
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Heeja; Rojewski, Jay W. – Journal of Vocational Education Research, 2002
This paper describes structural equation modeling (SEM) and possibilities for using SEM to address problems specific to workforce education and career development. A sample of adolescents identified as work-bound (i.e., transition directly from secondary school to work) from the National Education Longitudinal Study 1988-1996 database (NELS:…
Descriptors: Structural Equation Models, Career Education, Career Development, Technical Education
Pages: 1  |  ...  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  15  |  16