Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 3 |
| Since 2007 (last 20 years) | 7 |
Descriptor
| Maximum Likelihood Statistics | 8 |
| Statistical Inference | 8 |
| Structural Equation Models | 8 |
| Computation | 4 |
| Bayesian Statistics | 3 |
| Error of Measurement | 3 |
| Goodness of Fit | 3 |
| Regression (Statistics) | 3 |
| Simulation | 3 |
| Data | 2 |
| Statistical Distributions | 2 |
| More ▼ | |
Source
| Structural Equation Modeling:… | 3 |
| Educational Psychologist | 1 |
| Educational and Psychological… | 1 |
| Grantee Submission | 1 |
| Multivariate Behavioral… | 1 |
| Structural Equation Modeling | 1 |
Author
| Enders, Craig K. | 2 |
| Savalei, Victoria | 2 |
| Bentler, Peter M. | 1 |
| David Kaplan | 1 |
| Devlieger, Ines | 1 |
| Jorgensen, Terrence D. | 1 |
| Kjorte Harra | 1 |
| Lai, Keke | 1 |
| Levy, Roy | 1 |
| Lu, Zhenqiu | 1 |
| Mansolf, Maxwell | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 7 |
| Reports - Research | 4 |
| Reports - Evaluative | 3 |
| Reports - Descriptive | 1 |
Education Level
| Junior High Schools | 2 |
| Grade 10 | 1 |
| Grade 11 | 1 |
| Grade 12 | 1 |
| Grade 7 | 1 |
| Grade 8 | 1 |
| Grade 9 | 1 |
| High Schools | 1 |
| Middle Schools | 1 |
| Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| National Longitudinal Survey… | 1 |
| Peabody Individual… | 1 |
What Works Clearinghouse Rating
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Devlieger, Ines; Talloen, Wouter; Rosseel, Yves – Educational and Psychological Measurement, 2019
Factor score regression (FSR) is a popular alternative for structural equation modeling. Naively applying FSR induces bias for the estimators of the regression coefficients. Croon proposed a method to correct for this bias. Next to estimating effects without bias, interest often lies in inference of regression coefficients or in the fit of the…
Descriptors: Regression (Statistics), Computation, Goodness of Fit, Statistical Inference
Levy, Roy – Educational Psychologist, 2016
In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…
Descriptors: Bayesian Statistics, Models, Educational Research, Innovation
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a…
Descriptors: Structural Equation Models, Data, Computation, Maximum Likelihood Statistics
Savalei, Victoria; Yuan, Ke-Hai – Multivariate Behavioral Research, 2009
Evaluating the fit of a structural equation model via bootstrap requires a transformation of the data so that the null hypothesis holds exactly in the sample. For complete data, such a transformation was proposed by Beran and Srivastava (1985) for general covariance structure models and applied to structural equation modeling by Bollen and Stine…
Descriptors: Statistical Inference, Goodness of Fit, Structural Equation Models, Transformations (Mathematics)
Enders, Craig K.; Peugh, James L. – Structural Equation Modeling, 2004
Two methods, direct maximum likelihood (ML) and the expectation maximization (EM) algorithm, can be used to obtain ML parameter estimates for structural equation models with missing data (MD). Although the 2 methods frequently produce identical parameter estimates, it may be easier to satisfy missing at random assumptions using EM. However, no…
Descriptors: Inferences, Structural Equation Models, Factor Analysis, Error of Measurement

Peer reviewed
Direct link
