NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Maslowsky, Julie; Jager, Justin; Hemken, Douglas – International Journal of Behavioral Development, 2015
Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…
Descriptors: Structural Equation Models, Computation, Goodness of Fit, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Weihua; Hancock, Gregory R. – Journal of Educational and Behavioral Statistics, 2012
This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…
Descriptors: Robustness (Statistics), Hypothesis Testing, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Herzog, Walter; Boomsma, Anne; Reinecke, Sven – Structural Equation Modeling: A Multidisciplinary Journal, 2007
According to Kenny and McCoach (2003), chi-square tests of structural equation models produce inflated Type I error rates when the degrees of freedom increase. So far, the amount of this bias in large models has not been quantified. In a Monte Carlo study of confirmatory factor models with a range of 48 to 960 degrees of freedom it was found that…
Descriptors: Monte Carlo Methods, Structural Equation Models, Effect Size, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Zhongmiao; Thompson, Bruce – Journal of Experimental Education, 2007
In this study the authors investigated the use of 5 (i.e., Claudy, Ezekiel, Olkin-Pratt, Pratt, and Smith) R[squared] correction formulas with the Pearson r[squared]. The authors estimated adjustment bias and precision under 6 x 3 x 6 conditions (i.e., population [rho] values of 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9; population shapes normal, skewness…
Descriptors: Effect Size, Correlation, Mathematical Formulas, Monte Carlo Methods