NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 75 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Servet Demir; Muhammet Usak – SAGE Open, 2025
This systematic review examines the application of Partial Least Squares Structural Equation Modeling (PLS-SEM) in educational technology research from 2013 to 2023. Following PRISMA guidelines, 57 studies were selected from Scopus and Web of Science databases. The review process involved rigorous screening, data extraction, and analysis using…
Descriptors: Educational Technology, Educational Research, Structural Equation Models, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kaili Fang; Mohammad Noman – Asia-Pacific Education Researcher, 2025
The purpose of this review is to present what we know about paternalistic leadership (PL) in education. Systematic content analysis was adopted to identify the manifest and latent information across 29 identified empirical studies obtained through the core educational leadership and management journals and the two databases, Education Resources…
Descriptors: Leadership Styles, Instructional Leadership, Educational Research, Content Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Kyle; Kelcey, Benjamin – Educational and Psychological Measurement, 2023
Multilevel structural equation models (MSEMs) are well suited for educational research because they accommodate complex systems involving latent variables in multilevel settings. Estimation using Croon's bias-corrected factor score (BCFS) path estimation has recently been extended to MSEMs and demonstrated promise with limited sample sizes. This…
Descriptors: Structural Equation Models, Educational Research, Hierarchical Linear Modeling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua Weidlich; Ben Hicks; Hendrik Drachsler – Educational Technology Research and Development, 2024
Researchers tasked with understanding the effects of educational technology innovations face the challenge of providing evidence of causality. Given the complexities of studying learning in authentic contexts interwoven with technological affordances, conducting tightly-controlled randomized experiments is not always feasible nor desirable. Today,…
Descriptors: Educational Research, Educational Technology, Research Design, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Educational and Psychological Measurement, 2022
Multilevel structural equation modeling (MSEM) allows researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This article…
Descriptors: Structural Equation Models, Factor Structure, Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Yangqiuting Li; Chandralekha Singh – Physical Review Physics Education Research, 2024
Structural equation modeling (SEM) is a statistical method widely used in educational research to investigate relationships between variables. SEM models are typically constructed based on theoretical foundations and assessed through fit indices. However, a well-fitting SEM model alone is not sufficient to verify the causal inferences underlying…
Descriptors: Structural Equation Models, Statistical Analysis, Educational Research, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Xintong Zhang; Jiangwei Hu; Yunqian Zhou – Education and Information Technologies, 2025
This study explores the role of perceived utility, social influence, and ethical concerns in the adoption of AI-based data analysis tools among academic researchers in China, focusing on differences between public and private universities. The research aims to identify key drivers and barriers influencing the integration of AI technology in…
Descriptors: Usability, Ethics, Artificial Intelligence, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Ghasemy, Majid; Teeroovengadum, Viraiyan; Becker, Jan-Michael; Ringle, Christian M. – Higher Education: The International Journal of Higher Education Research, 2020
The relevance and prominence of the partial least squares structural equation modeling (PLS-SEM) method has recently increased in higher education research, especially in explanatory and predictive studies. We therefore first aim to assess previous PLS-SEM applications by providing a systematic review; second, we aim to highlight and summarize…
Descriptors: Least Squares Statistics, Structural Equation Models, Higher Education, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Núñez-Regueiro, Fernando; Juhel, Jacques; Bressoux, Pascal; Nurra, Cécile – Journal of Educational Psychology, 2022
Part of the evidence used to corroborate school motivation theories relies on modeling methods that estimate cross-lagged effects between constructs, that is, reciprocal effects from one occasion to another. Yet, the reliability of cross-lagged models rests on the assumption that students do not differ in their trajectories of growth over time…
Descriptors: High School Students, Student Motivation, Academic Achievement, High Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Marcoulides, Katerina M.; Yuan, Ke-Hai – International Journal of Research & Method in Education, 2020
Multilevel structural equation models (MSEM) are typically evaluated on the basis of goodness of fit indices. A problem with these indices is that they pertain to the entire model, reflecting simultaneously the degree of fit for all levels in the model. Consequently, in cases that lack model fit, it is unclear which level model is misspecified.…
Descriptors: Goodness of Fit, Structural Equation Models, Correlation, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Tessa Johnson; Tracy Sweet – Society for Research on Educational Effectiveness, 2021
Background/Context: Social network methodology is particularly relevant to the types of social structures found in education research. The current study develops a finite mixture approach for clustering ensembles of networks (NetMix). Following a structural equation modeling framework, NetMix simultaneously estimates a measurement model comprised…
Descriptors: Social Networks, Network Analysis, Research Methodology, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Hung-Ming; Lee, Min-Hsien; Liang, Jyh-Chong; Chang, Hsin-Yi; Huang, Pinchi; Tsai, Chin-Chung – British Journal of Educational Technology, 2020
Partial least squares structural equation modeling (PLS-SEM) has become a key multivariate statistical modeling technique that educational researchers frequently use. This paper reviews the uses of PLS-SEM in 16 major e-learning journals, and provides guidelines for improving the use of PLS-SEM as well as recommendations for future applications in…
Descriptors: Least Squares Statistics, Structural Equation Models, Electronic Learning, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Peugh, James; Feldon, David F. – CBE - Life Sciences Education, 2020
Structural equation modeling is an ideal data analytical tool for testing complex relationships among many analytical variables. It can simultaneously test multiple mediating and moderating relationships, estimate latent variables on the basis of related measures, and address practical issues such as nonnormality and missing data. To test the…
Descriptors: Structural Equation Models, Goodness of Fit, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5