NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mooijaart, Ab; Satorra, Albert – Psychometrika, 2012
Starting with Kenny and Judd ("Psychol. Bull." 96:201-210, 1984) several methods have been introduced for analyzing models with interaction terms. In all these methods more information from the data than just means and covariances is required. In this paper we also use more than just first- and second-order moments; however, we are aiming to…
Descriptors: Structural Equation Models, Computation, Goodness of Fit, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Mair, Patrick; Satorra, Albert; Bentler, Peter M. – Multivariate Behavioral Research, 2012
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Descriptors: Structural Equation Models, Data, Monte Carlo Methods, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Bryant, Fred B.; Satorra, Albert – Structural Equation Modeling: A Multidisciplinary Journal, 2012
We highlight critical conceptual and statistical issues and how to resolve them in conducting Satorra-Bentler (SB) scaled difference chi-square tests. Concerning the original (Satorra & Bentler, 2001) and new (Satorra & Bentler, 2010) scaled difference tests, a fundamental difference exists in how to compute properly a model's scaling correction…
Descriptors: Statistical Analysis, Structural Equation Models, Goodness of Fit, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Satorra, Albert – Psychological Methods, 2010
When using existing technology, it can be hard or impossible to determine whether two structural equation models that are being considered may be nested. There is also no routine technology for evaluating whether two very different structural models may be equivalent. A simple nesting and equivalence testing (NET) procedure is proposed that uses…
Descriptors: Structural Equation Models, Testing, Simulation, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Satorra, Albert; Bentler, Peter M. – Psychometrika, 2010
A scaled difference test statistic T[tilde][subscript d] that can be computed from standard software of structural equation models (SEM) by hand calculations was proposed in Satorra and Bentler (Psychometrika 66:507-514, 2001). The statistic T[tilde][subscript d] is asymptotically equivalent to the scaled difference test statistic T[bar][subscript…
Descriptors: Structural Equation Models, Scaling, Computer Software, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Satorra, Albert; Yuan, Ke-Hai – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A typical structural equation model is intended to reproduce the means, variances, and correlations or covariances among a set of variables based on parameter estimates of a highly restricted model. It is not widely appreciated that the sample statistics being modeled can be quite sensitive to outliers and influential observations, leading to bias…
Descriptors: Smoking, Structural Equation Models, Cancer, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Saris, Willem E.; Satorra, Albert; van der Veld, William M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Assessing the correctness of a structural equation model is essential to avoid drawing incorrect conclusions from empirical research. In the past, the chi-square test was recommended for assessing the correctness of the model but this test has been criticized because of its sensitivity to sample size. As a reaction, an abundance of fit indexes…
Descriptors: Structural Equation Models, Validity, Goodness of Fit, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Mooijaart, Ab; Satorra, Albert – Psychometrika, 2009
In this paper, we show that for some structural equation models (SEM), the classical chi-square goodness-of-fit test is unable to detect the presence of nonlinear terms in the model. As an example, we consider a regression model with latent variables and interactions terms. Not only the model test has zero power against that type of…
Descriptors: Structural Equation Models, Geometric Concepts, Goodness of Fit, Models
Peer reviewed Peer reviewed
Coenders, Germa; Saris, Willem E.; Satorra, Albert – Structural Equation Modeling, 1997
A Monte Carlo study is reported that shows the comparative performance of alternative approaches under deviations from their respective assumptions in the case of structural equation models with latent variables with attention restricted to point estimates of model parameters. The conditional polychoric correlations method is shown most robust…
Descriptors: Estimation (Mathematics), Monte Carlo Methods, Structural Equation Models
Peer reviewed Peer reviewed
Muthen, Bengt O.; Satorra, Albert – Psychometrika, 1995
B. O. Muthen (1984) formulated a general model and estimation procedure for structural equation modeling with a mixture of dichotomous, ordered categorical, and continuous measures of latent variables that was implemented in the LISCOMP program. This paper extends the description of the asymptotics and shows how the formulas can be derived.…
Descriptors: Estimation (Mathematics), Least Squares Statistics, Measurement Techniques, Structural Equation Models