Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 5 |
Descriptor
Associative Learning | 6 |
Role | 6 |
Stimuli | 6 |
Animals | 5 |
Brain Hemisphere Functions | 4 |
Conditioning | 4 |
Learning Processes | 4 |
Entomology | 2 |
Genetics | 2 |
Memory | 2 |
Neurology | 2 |
More ▼ |
Author
Buchner, Erich | 1 |
Carelli, Regina M. | 1 |
Cromer, Jason A. | 1 |
Diegelmann, Soren | 1 |
Gerber, Bertram | 1 |
Machon, Michelle | 1 |
Maren, Stephen | 1 |
Michels, Birgit | 1 |
Miller, Earl K. | 1 |
Mueller, Uli | 1 |
Orsini, Caitlin A. | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 5 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Raccuglia, Davide; Mueller, Uli – Learning & Memory, 2013
Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…
Descriptors: Learning Processes, Associative Learning, Olfactory Perception, Animals
Tabone, Christopher J.; de Belle, J. Steven – Learning & Memory, 2011
Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…
Descriptors: Stimuli, Conditioning, Associative Learning, Memory
Cromer, Jason A.; Machon, Michelle; Miller, Earl K. – Journal of Cognitive Neuroscience, 2011
The PFC plays a central role in our ability to learn arbitrary rules, such as "green means go." Previous experiments from our laboratory have used conditional association learning to show that slow, gradual changes in PFC neural activity mirror monkeys' slow acquisition of associations. These previous experiments required monkeys to repeatedly…
Descriptors: Stimuli, Prior Learning, Brain Hemisphere Functions, Animals
Roitman, Mitchell F.; Wheeler, Robert A.; Tiesinga, Paul H. E.; Roitman, Jamie D.; Carelli, Regina M. – Learning & Memory, 2010
The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA)…
Descriptors: Conditioning, Rewards, Brain Hemisphere Functions, Role
Rabinak, Christine A.; Orsini, Caitlin A.; Zimmerman, Joshua M.; Maren, Stephen – Learning & Memory, 2009
The basolateral complex (BLA) and central nucleus (CEA) of the amygdala play critical roles in associative learning, including Pavlovian conditioning. However, the precise role for these structures in Pavlovian conditioning is not clear. Recent work in appetitive conditioning paradigms suggests that the amygdala, particularly the BLA, has an…
Descriptors: Stimuli, Classical Conditioning, Associative Learning, Brain Hemisphere Functions
Michels, Birgit; Diegelmann, Soren; Tanimoto, Hiromu; Schwenkert, Isabell; Buchner, Erich; Gerber, Bertram – Learning & Memory, 2005
Synapsins are evolutionarily conserved, highly abundant vesicular phosphoproteins in presynaptic terminals. They are thought to regulate the recruitment of synaptic vesicles from the reserve pool to the readily-releasable pool, in particular when vesicle release is to be maintained at high spiking rates. As regulation of transmitter release is a…
Descriptors: Animals, Associative Learning, Role, Neurology