NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)0
Since 2007 (last 20 years)1
Education Level
Higher Education1
Audience
Researchers3
Laws, Policies, & Programs
Elementary and Secondary…1
What Works Clearinghouse Rating
Showing 1 to 15 of 60 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rodgers, Joseph Lee – American Psychologist, 2010
A quiet methodological revolution, a modeling revolution, has occurred over the past several decades, almost without discussion. In contrast, the 20th century ended with contentious argument over the utility of null hypothesis significance testing (NHST). The NHST controversy may have been at least partially irrelevant, because in certain ways the…
Descriptors: Epistemology, Mathematical Models, Hypothesis Testing, Statistical Significance
Peer reviewed Peer reviewed
Stoloff, Peter H. – Educational and Psychological Measurement, 1970
Descriptors: Analysis of Variance, Hypothesis Testing, Mathematical Models, Statistical Significance
Peer reviewed Peer reviewed
Rogosa, David – Educational and Psychological Measurement, 1981
The form of the Johnson-Neyman region of significance is shown to be determined by the statistic for testing the null hypothesis that the population within-group regressions are parallel. Results are obtained for both simultaneous and nonsimultaneous regions of significance. (Author)
Descriptors: Hypothesis Testing, Mathematical Models, Predictor Variables, Regression (Statistics)
Peer reviewed Peer reviewed
Vegelius, Jan – Educational and Psychological Measurement, 1981
The G index is a measure of the similarity between individuals over dichotomous items. Some tests for the G-index are described. For each case an example is included. (Author/GK)
Descriptors: Hypothesis Testing, Mathematical Formulas, Mathematical Models, Nonparametric Statistics
Peer reviewed Peer reviewed
Keselman, H. J.; And Others – Educational and Psychological Measurement, 1981
This paper demonstrates that multiple comparison tests using a pooled error term are dependent on the circularity assumption and shows how to compute tests which are insensitive (robust) to this assumption. (Author/GK)
Descriptors: Hypothesis Testing, Mathematical Models, Research Design, Statistical Significance
Peer reviewed Peer reviewed
Hollingsworth, Holly H. – Educational and Psychological Measurement, 1981
If the null hypothesis of a one-sample test of multivariate means is rejected, the dimension of the line joining the population centroid and the hypothesized centroid can be interpreted with a linear function, using a discriminant function and the correlation of each dependent variable with a discriminant score. (Author/BW)
Descriptors: Discriminant Analysis, Hypothesis Testing, Mathematical Models, Statistical Analysis
Peer reviewed Peer reviewed
Katz, Barry M.; McSweeney, Maryellen – Educational and Psychological Measurement, 1980
Errors of misclassification associated with two concept acquisition criteria and their effects on the actual significance level and power of a statistical test for sequential development of these concepts are presented. Explicit illustrations of actual significance levels and power values are provided for different misclassification models.…
Descriptors: Concept Formation, Hypothesis Testing, Mathematical Models, Power (Statistics)
Peer reviewed Peer reviewed
Ronis, David L. – Educational and Psychological Measurement, 1981
Many researchers draw the conclusion that one independent variable has more impact than another without testing the null hypothesis that their impact is equal. This paper presents and recommends a technique for testing the relative magnitude of effects, rather than basing conclusions solely on descriptive statistics. (Author/BW)
Descriptors: Analysis of Variance, Hypothesis Testing, Mathematical Models, Research Design
Peer reviewed Peer reviewed
Ramsey, Philip H. – Journal of Educational Statistics, 1980
Disagreements have arisen about the robustness of the t test in normal populations with unequal variances. Employing liberal but objective standards for assessing robustness, it is shown that the t test is not always robust to the assumption of equal population variances even when sample sizes are equal. (Author/JKS)
Descriptors: Analysis of Variance, Data Analysis, Hypothesis Testing, Mathematical Models
Ary, Donald; Karabinus, Robert – 1975
The power of a statistical test is, in part, a function of the reliability of the dependable variable being analyzed. The substitution of sigma square divided by the reliability coefficient for sigma is proposed. This enables the researcher to incorporate dependent variable reliability information when determining the sample size required for a…
Descriptors: Hypothesis Testing, Mathematical Models, Measurement Techniques, Reliability
Peer reviewed Peer reviewed
Hubert, Lawrence J.; Baker, Frank B. – Multivariate Behavioral Research, 1978
The strategy for investigating convergent and discriminant test validity, known as the multitrait-multimethod matrix, is investigated. A nonparametric significance testing procedure is suggested and demonstrated. (JKS)
Descriptors: Correlation, Hypothesis Testing, Mathematical Models, Matrices
Newman, Isadore; And Others – 1980
When investigating differences between two sets of scores, the t test is appropriate. If the two sets of data are from two groups of subjects, then the independent t test is appropriate. If the two sets are from the same subjects, the dependent t test is required. In this paper, the authors describe the use of a third test when part of a data set…
Descriptors: Hypothesis Testing, Mathematical Models, Multiple Regression Analysis, Research Design
Betz, M. Austin – 1976
Simultaneous test procedures (STPS for short) in the context of the unrestricted full rank general linear multivariate model for population cell means are introduced and utilized to analyze interactions in factorial designs. By appropriate choice of an implying hypothesis, it is shown how to test overall main effects, interactions, simple main,…
Descriptors: Analysis of Variance, Hypothesis Testing, Interaction, Mathematical Models
Peer reviewed Peer reviewed
Wilcox, Rand R. – Journal of Educational Statistics, 1984
Two stage multiple-comparison procedures give an exact solution to problems of power and Type I errors, but require equal sample sizes in the first stage. This paper suggests a method of evaluating the experimentwise Type I error probability when the first stage has unequal sample sizes. (Author/BW)
Descriptors: Hypothesis Testing, Mathematical Models, Power (Statistics), Probability
Peer reviewed Peer reviewed
Wang, Marilyn D. – Educational and Psychological Measurement, 1982
Formulas for estimating the population measure of effect strength are based on the assumption that sample sizes are proportional to the sizes of their respective treatment populations. Because this assumption is frequently violated, a general method of estimating effect strength for the one-factor, fixed-effects design is presented. (Author/BW)
Descriptors: Analysis of Variance, Estimation (Mathematics), Hypothesis Testing, Mathematical Models
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4