NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ryan Corser; Raymond P. Voss Jr.; John D. Jasper – Journal of Numerical Cognition, 2024
Higher numeracy is associated with better comprehension and use of numeric information as well as reduced susceptibility to some decision biases. We extended this line of work by showing that increased numeracy predicted probability maximizing (versus matching) as well as a better appreciation of large sample sizes. At the same time, we replicated…
Descriptors: Undergraduate Students, Numeracy, Mathematical Concepts, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Bruce; French, Brian; Adesope, Olusola; Gotch, Chad – Journal of Experimental Education, 2017
Measures of variability are successfully used in predictive modeling in research areas outside of education. This study examined how standard deviations can be used to address research questions not easily addressed using traditional measures such as group means based on index variables. Student survey data were obtained from the Organisation for…
Descriptors: Predictor Variables, Models, Predictive Measurement, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Chan, Wai – Psychometrika, 2011
The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…
Descriptors: Statistical Bias, Error of Measurement, Regression (Statistics), Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Olivera-Aguilar, Margarita; Millsap, Roger E. – Multivariate Behavioral Research, 2013
A common finding in studies of differential prediction across groups is that although regression slopes are the same or similar across groups, group differences exist in regression intercepts. Building on earlier work by Birnbaum (1979), Millsap (1998) presented an invariant factor model that would explain such intercept differences as arising due…
Descriptors: Statistical Analysis, Measurement, Prediction, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Reichardt, Charles S. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…
Descriptors: Structural Equation Models, Statistical Data, Longitudinal Studies, Error of Measurement
Peer reviewed Peer reviewed
Anderson, Lance E.; And Others – Multivariate Behavioral Research, 1996
Simulations were used to compare the moderator variable detection capabilities of moderated multiple regression (MMR) and errors-in-variables regression (EIVR). Findings show that EIVR estimates are superior for large samples, but that MMR is better when reliabilities or sample sizes are low. (SLD)
Descriptors: Comparative Analysis, Error of Measurement, Estimation (Mathematics), Interaction
Peer reviewed Peer reviewed
Broodbooks, Wendy J.; Elmore, Patricia B. – Educational and Psychological Measurement, 1987
The effects of sample size, number of variables, and population value of the congruence coefficient on the sampling distribution of the congruence coefficient were examined. Sample data were generated on the basis of the common factor model, and principal axes factor analyses were performed. (Author/LMO)
Descriptors: Factor Analysis, Mathematical Models, Monte Carlo Methods, Predictor Variables
Snyder, Patricia; Lawson, Stephen – 1992
Magnitude of effect measures (MEMs), when adequately understood and correctly used, are important aids for researchers who do not want to rely solely on tests of statistical significance in substantive result interpretation. The MEM tells how much of the dependent variable can be controlled, predicted, or explained by the independent variables.…
Descriptors: Data Interpretation, Effect Size, Estimation (Mathematics), Measurement Techniques
Vasu, Ellen S.; Elmore, Patricia B. – 1975
The effects of the violation of the assumption of normality coupled with the condition of multicollinearity upon the outcome of testing the hypothesis Beta equals zero in the two-predictor regression equation is investigated. A monte carlo approach was utilized in which three differenct distributions were sampled for two sample sizes over…
Descriptors: Correlation, Error of Measurement, Factor Structure, Hypothesis Testing