NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 16 to 30 of 157 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Pósch, Krisztián – Sociological Methods & Research, 2021
Complex social scientific theories are conventionally tested using linear structural equation modeling (SEM). However, the underlying assumptions of linear SEM often prove unrealistic, making the decomposition of direct and indirect effects problematic. Recent advancements in causal mediation analysis can help to address these shortcomings,…
Descriptors: Social Theories, Causal Models, Structural Equation Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hertog, Steffen – Sociological Methods & Research, 2023
In mixed methods approaches, statistical models are used to identify "nested" cases for intensive, small-n investigation for a range of purposes, including notably the examination of causal mechanisms. This article shows that under a commonsense interpretation of causal effects, large-n models allow no reliable conclusions about effect…
Descriptors: Case Studies, Generalization, Prediction, Mixed Methods Research
Peer reviewed Peer reviewed
Direct linkDirect link
Yangqiuting Li; Chandralekha Singh – Physical Review Physics Education Research, 2024
Structural equation modeling (SEM) is a statistical method widely used in educational research to investigate relationships between variables. SEM models are typically constructed based on theoretical foundations and assessed through fit indices. However, a well-fitting SEM model alone is not sufficient to verify the causal inferences underlying…
Descriptors: Structural Equation Models, Statistical Analysis, Educational Research, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Marek Arendarczyk; Tomasz J. Kozubowski; Anna K. Panorska – Journal of Statistics and Data Science Education, 2023
We provide tools for identification and exploration of data with very large variability having power law tails. Such data describe extreme features of processes such as fire losses, flood, drought, financial gain/loss, hurricanes, population of cities, among others. Prediction and quantification of extreme events are at the forefront of the…
Descriptors: Natural Disasters, Probability, Regression (Statistics), Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Nianbo Dong; Keith Herman; Benjamin Kelcey; Sirui Ren; Wendy Reinke; Jessaca Spybrook – Grantee Submission, 2025
Contextual, identity, and cultural factors are not only associated with student outcomes but can also serve to moderate the effects of interventions. However, the conventional analysis of moderation commonly used in school psychology is subject to the selection bias potentially introducing bias into estimated moderator effects. This article…
Descriptors: Causal Models, Statistical Analysis, Context Effect, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Cuartas, Jorge; McCoy, Dana Charles – International Journal of Behavioral Development, 2021
Mediation has played a critical role in developmental theory and research. Yet, developmentalists rarely discuss the methodological challenges of establishing causality in mediation analysis or potential strategies to improve the identification of causal mediation effects. In this article, we discuss the potential outcomes framework from…
Descriptors: Mediation Theory, Behavior Development, Influences, Inferences
Qinyun Lin; Amy K. Nuttall; Qian Zhang; Kenneth A. Frank – Grantee Submission, 2023
Empirical studies often demonstrate multiple causal mechanisms potentially involving simultaneous or causally related mediators. However, researchers often use simple mediation models to understand the processes because they do not or cannot measure other theoretically relevant mediators. In such cases, another potentially relevant but unobserved…
Descriptors: Causal Models, Mediation Theory, Error of Measurement, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Qin – Grantee Submission, 2023
When designing a study for causal mediation analysis, it is crucial to conduct a power analysis to determine the sample size required to detect the causal mediation effects with sufficient power. However, the development of power analysis methods for causal mediation analysis has lagged far behind. To fill the knowledge gap, I proposed a…
Descriptors: Sample Size, Statistical Analysis, Causal Models, Mediation Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Wodtke, Geoffrey T. – Sociological Methods & Research, 2020
Social scientists are often interested in estimating the marginal effects of a time-varying treatment on an end-of-study continuous outcome. With observational data, estimating these effects is complicated by the presence of time-varying confounders affected by prior treatments, which may lead to bias in conventional regression and matching…
Descriptors: Regression (Statistics), Computation, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jane E. Miller – Numeracy, 2023
Students often believe that statistical significance is the only determinant of whether a quantitative result is "important." In this paper, I review traditional null hypothesis statistical testing to identify what questions inferential statistics can and cannot answer, including statistical significance, effect size and direction,…
Descriptors: Statistical Significance, Holistic Approach, Statistical Inference, Effect Size
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Lujie Karen; Ramsey, Joseph; Dubrawski, Artur – Journal of Educational Data Mining, 2021
Human one-on-one coaching involves complex multimodal interactions. Successful coaching requires teachers to closely monitor students' cognitive-affective states and provide support of optimal type, timing, and amount. However, most of the existing human tutoring studies focus primarily on verbal interactions and have yet to incorporate the rich…
Descriptors: Causal Models, Coaching (Performance), Statistical Analysis, Correlation
Peng Ding; Luke W. Miratrix – Grantee Submission, 2019
For binary experimental data, we discuss randomization-based inferential procedures that do not need to invoke any modeling assumptions. We also introduce methods for likelihood and Bayesian inference based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have…
Descriptors: Causal Models, Statistical Inference, Randomized Controlled Trials, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Keller, Bryan – Journal of Educational and Behavioral Statistics, 2020
Widespread availability of rich educational databases facilitates the use of conditioning strategies to estimate causal effects with nonexperimental data. With dozens, hundreds, or more potential predictors, variable selection can be useful for practical reasons related to communicating results and for statistical reasons related to improving the…
Descriptors: Nonparametric Statistics, Computation, Testing, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Sales, Adam C.; Pane, John F. – Journal of Research on Educational Effectiveness, 2021
Randomized evaluations of educational technology produce log data as a bi-product: highly granular data on student and teacher usage. These datasets could shed light on causal mechanisms, effect heterogeneity, or optimal use. However, there are methodological challenges: implementation is not randomized and is only defined for the treatment group,…
Descriptors: Educational Technology, Use Studies, Randomized Controlled Trials, Mathematics Curriculum
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11