NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 113 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jianbin Fu; TsungHan Ho; Xuan Tan – Practical Assessment, Research & Evaluation, 2025
Item parameter estimation using an item response theory (IRT) model with fixed ability estimates is useful in equating with small samples on anchor items. The current study explores the impact of three ability estimation methods (weighted likelihood estimation [WLE], maximum a posteriori [MAP], and posterior ability distribution estimation [PST])…
Descriptors: Item Response Theory, Test Items, Computation, Equated Scores
Sinharay, Sandip – Grantee Submission, 2021
Drasgow, Levine, and Zickar (1996) suggested a statistic based on the Neyman-Pearson lemma (e.g., Lehmann & Romano, 2005, p. 60) for detecting preknowledge on a known set of items. The statistic is a special case of the optimal appropriateness indices of Levine and Drasgow (1988) and is the most powerful statistic for detecting item…
Descriptors: Robustness (Statistics), Hypothesis Testing, Statistics, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Weimeng; Liu, Yang; Liu, Hongyun – Journal of Educational and Behavioral Statistics, 2022
Differential item functioning (DIF) occurs when the probability of endorsing an item differs across groups for individuals with the same latent trait level. The presence of DIF items may jeopardize the validity of an instrument; therefore, it is crucial to identify DIF items in routine operations of educational assessment. While DIF detection…
Descriptors: Test Bias, Test Items, Equated Scores, Regression (Statistics)
Jinjin Huang – ProQuest LLC, 2020
Measurement invariance is crucial for an effective and valid measure of a construct. Invariance holds when the latent trait varies consistently across subgroups; in other words, the mean differences among subgroups are only due to true latent ability differences. Differential item functioning (DIF) occurs when measurement invariance is violated.…
Descriptors: Robustness (Statistics), Item Response Theory, Test Items, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Man, Kaiwen; Harring, Jeffrey R. – Educational and Psychological Measurement, 2021
Many approaches have been proposed to jointly analyze item responses and response times to understand behavioral differences between normally and aberrantly behaved test-takers. Biometric information, such as data from eye trackers, can be used to better identify these deviant testing behaviors in addition to more conventional data types. Given…
Descriptors: Cheating, Item Response Theory, Reaction Time, Eye Movements
Peer reviewed Peer reviewed
Direct linkDirect link
Su, Shiyang; Wang, Chun; Weiss, David J. – Educational and Psychological Measurement, 2021
S-X[superscript 2] is a popular item fit index that is available in commercial software packages such as "flex"MIRT. However, no research has systematically examined the performance of S-X[superscript 2] for detecting item misfit within the context of the multidimensional graded response model (MGRM). The primary goal of this study was…
Descriptors: Statistics, Goodness of Fit, Test Items, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lozano, José H.; Revuelta, Javier – Applied Measurement in Education, 2021
The present study proposes a Bayesian approach for estimating and testing the operation-specific learning model, a variant of the linear logistic test model that allows for the measurement of the learning that occurs during a test as a result of the repeated use of the operations involved in the items. The advantages of using a Bayesian framework…
Descriptors: Bayesian Statistics, Computation, Learning, Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Karadavut, Tugba – Applied Measurement in Education, 2021
Mixture IRT models address the heterogeneity in a population by extracting latent classes and allowing item parameters to vary between latent classes. Once the latent classes are extracted, they need to be further examined to be characterized. Some approaches have been adopted in the literature for this purpose. These approaches examine either the…
Descriptors: Item Response Theory, Models, Test Items, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Metsämuuronen, Jari – International Journal of Educational Methodology, 2020
Kelley's Discrimination Index (DI) is a simple and robust, classical non-parametric short-cut to estimate the item discrimination power (IDP) in the practical educational settings. Unlike item-total correlation, DI can reach the ultimate values of +1 and -1, and it is stable against the outliers. Because of the computational easiness, DI is…
Descriptors: Test Items, Computation, Item Analysis, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Berger, Moritz; Tutz, Gerhard – Journal of Educational and Behavioral Statistics, 2016
Detection of differential item functioning (DIF) by use of the logistic modeling approach has a long tradition. One big advantage of the approach is that it can be used to investigate nonuniform (NUDIF) as well as uniform DIF (UDIF). The classical approach allows one to detect DIF by distinguishing between multiple groups. We propose an…
Descriptors: Test Bias, Regression (Statistics), Nonparametric Statistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Sherry; Huggins-Manley, Anne Corinne – Educational and Psychological Measurement, 2020
The semi-generalized partial credit model (Semi-GPCM) has been proposed as a unidimensional modeling method for handling not applicable scale responses and neutral scale responses, and it has been suggested that the model may be of use in handling missing data in scale items. The purpose of this study is to evaluate the ability of the…
Descriptors: Models, Statistical Analysis, Response Style (Tests), Test Items
Tingir, Seyfullah – ProQuest LLC, 2019
Educators use various statistical techniques to explain relationships between latent and observable variables. One way to model these relationships is to use Bayesian networks as a scoring model. However, adjusting the conditional probability tables (CPT-parameters) to fit a set of observations is still a challenge when using Bayesian networks. A…
Descriptors: Bayesian Statistics, Statistical Analysis, Scoring, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Lenhard, Wolfgang; Lenhard, Alexandra – Educational and Psychological Measurement, 2021
The interpretation of psychometric test results is usually based on norm scores. We compared semiparametric continuous norming (SPCN) with conventional norming methods by simulating results for test scales with different item numbers and difficulties via an item response theory approach. Subsequently, we modeled the norm scores based on random…
Descriptors: Test Norms, Scores, Regression (Statistics), Test Items
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ganzfried, Sam; Yusuf, Farzana – Education Sciences, 2018
A problem faced by many instructors is that of designing exams that accurately assess the abilities of the students. Typically, these exams are prepared several days in advance, and generic question scores are used based on rough approximation of the question difficulty and length. For example, for a recent class taught by the author, there were…
Descriptors: Weighted Scores, Test Construction, Student Evaluation, Multiple Choice Tests
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8