NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 126 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Fangxing Bai; Ben Kelcey; Yanli Xie; Kyle Cox – Journal of Experimental Education, 2025
Prior research has suggested that clustered regression discontinuity designs are a formidable alternative to cluster randomized designs because they provide targeted treatment assignment while maintaining a high-quality basis for inferences on local treatment effects. However, methods for the design and analysis of clustered regression…
Descriptors: Regression (Statistics), Statistical Analysis, Research Design, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Alexander Kwon; Kyungtae Lee – Evaluation Review, 2025
We study the external validity of instrumental variable estimation. The key assumption we impose for external validity is conditional external unconfoundedness among compliers, which means that the treatment effect and target selection are independent among compliers conditional on covariates. We study this assumption with a case study about the…
Descriptors: Validity, Computation, Time Management, Fuels
Peer reviewed Peer reviewed
Direct linkDirect link
Bulus, Metin – Journal of Research on Educational Effectiveness, 2022
Although Cattaneo et al. (2019) provided a data-driven framework for power computations for Regression Discontinuity Designs in line with rdrobust Stata and R commands, which allows higher-order functional forms for the score variable when using the non-parametric local polynomial estimation, analogous advancements in their parametric estimation…
Descriptors: Effect Size, Computation, Regression (Statistics), Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Andersson, Gustaf; Yang-Wallentin, Fan – Educational and Psychological Measurement, 2021
Factor score regression has recently received growing interest as an alternative for structural equation modeling. However, many applications are left without guidance because of the focus on normally distributed outcomes in the literature. We perform a simulation study to examine how a selection of factor scoring methods compare when estimating…
Descriptors: Regression (Statistics), Statistical Analysis, Computation, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Yuxiang Gao; Lauren Kennedy; Daniel Simpson; Andrew Gelman – Grantee Submission, 2021
A central theme in the field of survey statistics is estimating population-level quantities through data coming from potentially non-representative samples of the population. Multilevel regression and poststratification (MRP), a model-based approach, is gaining traction against the traditional weighted approach for survey estimates. MRP estimates…
Descriptors: Regression (Statistics), Statistical Analysis, Surveys, Computation
Kenneth Tyler Wilcox; Ross Jacobucci; Zhiyong Zhang; Brooke A. Ammerman – Grantee Submission, 2023
Text is a burgeoning data source for psychological researchers, but little methodological research has focused on adapting popular modeling approaches for text to the context of psychological research. One popular measurement model for text, topic modeling, uses a latent mixture model to represent topics underlying a body of documents. Recently,…
Descriptors: Bayesian Statistics, Content Analysis, Undergraduate Students, Self Destructive Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Bramley, Paul; López-López, José A.; Higgins, Julian P. T. – Research Synthesis Methods, 2021
Standard meta-analysis methods are vulnerable to bias from incomplete reporting of results (both publication and outcome reporting bias) and poor study quality. Several alternative methods have been proposed as being less vulnerable to such biases. To evaluate these claims independently we simulated study results under a broad range of conditions…
Descriptors: Meta Analysis, Bias, Research Problems, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Blozis, Shelley A.; Harring, Jeffrey R. – Sociological Methods & Research, 2021
Nonlinear mixed-effects models are models in which one or more coefficients of the growth model enter in a nonlinear manner, such as appearing in the exponent of the growth function. In their applications, the within-individual residuals are often assumed to be independent with constant variance across time, an assumption that implies that the…
Descriptors: Statistical Analysis, Models, Computation, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Köhler, Carmen; Hartig, Johannes; Naumann, Alexander – Educational Psychology Review, 2021
The article focuses on estimating effects in nonrandomized studies with two outcome measurement occasions and one predictor variable. Given such a design, the analysis approach can be to include the measurement at the previous time point as a predictor in the regression model (ANCOVA), or to predict the change-score of the outcome variable…
Descriptors: Research Design, Statistical Analysis, Educational Research, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lee, Hyung Rock; Sung, Jaeyun; Lee, Sunbok – International Journal of Assessment Tools in Education, 2021
Conventional estimators for indirect effects using a difference in coefficients and product of coefficients produce the same results for continuous outcomes. However, for binary outcomes, the difference in coefficient estimator systematically underestimates the indirect effects because of a scaling problem. One solution is to standardize…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Scaling
Lauren Kennedy; Andrew Gelman – Grantee Submission, 2021
Psychology research often focuses on interactions, and this has deep implications for inference from non-representative samples. For the goal of estimating average treatment effects, we propose to fit a model allowing treatment to interact with background variables and then average over the distribution of these variables in the population. This…
Descriptors: Models, Generalization, Psychological Studies, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ragan, Daniel T.; Osgood, D. Wayne; Ramirez, Nayan G.; Moody, James; Gest, Scott D. – Sociological Methods & Research, 2022
The current study compares estimates of peer influence from an analytic approach that explicitly address network processes with those from traditional approaches that do not. Using longitudinal network data from the PROmoting School-community-university Partnerships to Enhance Resilience peers project, we obtain estimates of social influence on…
Descriptors: Peer Influence, Social Networks, Network Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Kuha, Jouni; Mills, Colin – Sociological Methods & Research, 2020
It is widely believed that regression models for binary responses are problematic if we want to compare estimated coefficients from models for different groups or with different explanatory variables. This concern has two forms. The first arises if the binary model is treated as an estimate of a model for an unobserved continuous response and the…
Descriptors: Comparative Analysis, Regression (Statistics), Research Problems, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Marcoulides, Katerina M.; Raykov, Tenko – Educational and Psychological Measurement, 2019
A procedure that can be used to evaluate the variance inflation factors and tolerance indices in linear regression models is discussed. The method permits both point and interval estimation of these factors and indices associated with explanatory variables considered for inclusion in a regression model. The approach makes use of popular latent…
Descriptors: Regression (Statistics), Statistical Analysis, Computation, Computer Software
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9