Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 5 |
Descriptor
Source
| Computer Science Education | 1 |
| International Educational… | 1 |
| Journal of Educational… | 1 |
| Journal of Educational… | 1 |
| World Journal of Education | 1 |
Author
Publication Type
| Journal Articles | 4 |
| Reports - Research | 4 |
| Collected Works - Proceedings | 1 |
Education Level
| Higher Education | 5 |
| Postsecondary Education | 4 |
| Elementary Education | 1 |
| Grade 6 | 1 |
| Intermediate Grades | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Secondary Education | 1 |
Audience
Location
| Finland | 2 |
| Philippines | 2 |
| France | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Becker, Brett A.; Glanville, Graham; Iwashima, Ricardo; McDonnell, Claire; Goslin, Kyle; Mooney, Catherine – Computer Science Education, 2016
Programming is an essential skill that many computing students are expected to master. However, programming can be difficult to learn. Successfully interpreting compiler error messages (CEMs) is crucial for correcting errors and progressing toward success in programming. Yet these messages are often difficult to understand and pose a barrier to…
Descriptors: Computer Science Education, Programming, Novices, Error Patterns
Veerasamy, Ashok Kumar; D'Souza, Daryl; Laakso, Mikko-Jussi – Journal of Educational Technology Systems, 2016
This article presents a study aimed at examining the novice student answers in an introductory programming final e-exam to identify misconceptions and types of errors. Our study used the Delphi concept inventory to identify student misconceptions and skill, rule, and knowledge-based errors approach to identify the types of errors made by novices…
Descriptors: Computer Science Education, Programming, Novices, Misconceptions
Bringula, Rex P.; Manabat, Geecee Maybelline A.; Tolentino, Miguel Angelo A.; Torres, Edmon L. – World Journal of Education, 2012
This descriptive study determined which of the sources of errors would predict the errors committed by novice Java programmers. Descriptive statistics revealed that the respondents perceived that they committed the identified eighteen errors infrequently. Thought error was perceived to be the main source of error during the laboratory programming…
Descriptors: Error Patterns, Programming, Programming Languages, Predictor Variables
Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C. – Journal of Educational Computing Research, 2013
In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…
Descriptors: Programming, High Achievement, Introductory Courses, Qualitative Research
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection

Peer reviewed
Direct link
