Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 5 |
| Since 2017 (last 10 years) | 12 |
| Since 2007 (last 20 years) | 30 |
Descriptor
| Effect Size | 35 |
| Monte Carlo Methods | 35 |
| Statistical Analysis | 35 |
| Sample Size | 16 |
| Computation | 11 |
| Error of Measurement | 11 |
| Hypothesis Testing | 10 |
| Intervention | 9 |
| Correlation | 8 |
| Comparative Analysis | 7 |
| Evaluation Methods | 7 |
| More ▼ | |
Source
Author
| Porter, Kristin E. | 3 |
| Dong, Nianbo | 2 |
| Jan, Show-Li | 2 |
| Manolov, Rumen | 2 |
| Shieh, Gwowen | 2 |
| Solanas, Antonio | 2 |
| Basol-Gocmen, Gulsah | 1 |
| Bellara, Aarti P. | 1 |
| Blankson, Lydia | 1 |
| Bonett, Douglas G. | 1 |
| Bonnett, Douglas G. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 25 |
| Reports - Research | 22 |
| Reports - Evaluative | 6 |
| Dissertations/Theses -… | 3 |
| Guides - Non-Classroom | 3 |
| Speeches/Meeting Papers | 2 |
| Reports - Descriptive | 1 |
Education Level
| Elementary Education | 2 |
| Higher Education | 2 |
| Grade 8 | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
| Secondary Education | 1 |
Audience
| Researchers | 3 |
Location
| Hong Kong | 1 |
| New Zealand | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Early Childhood Longitudinal… | 1 |
| National Assessment of… | 1 |
| Trends in International… | 1 |
| UCLA Loneliness Scale | 1 |
| Zung Self Rating Depression… | 1 |
What Works Clearinghouse Rating
Menglin Xu; Jessica A. R. Logan – Educational and Psychological Measurement, 2024
Research designs that include planned missing data are gaining popularity in applied education research. These methods have traditionally relied on introducing missingness into data collections using the missing completely at random (MCAR) mechanism. This study assesses whether planned missingness can also be implemented when data are instead…
Descriptors: Research Design, Research Methodology, Monte Carlo Methods, Statistical Analysis
Vembye, Mikkel Helding; Pustejovsky, James Eric; Pigott, Therese Deocampo – Journal of Educational and Behavioral Statistics, 2023
Meta-analytic models for dependent effect sizes have grown increasingly sophisticated over the last few decades, which has created challenges for a priori power calculations. We introduce power approximations for tests of average effect sizes based upon several common approaches for handling dependent effect sizes. In a Monte Carlo simulation, we…
Descriptors: Meta Analysis, Robustness (Statistics), Statistical Analysis, Models
Poom, Leo; af Wåhlberg, Anders – Research Synthesis Methods, 2022
In meta-analysis, effect sizes often need to be converted into a common metric. For this purpose conversion formulas have been constructed; some are exact, others are approximations whose accuracy has not yet been systematically tested. We performed Monte Carlo simulations where samples with pre-specified population correlations between the…
Descriptors: Meta Analysis, Effect Size, Mathematical Formulas, Monte Carlo Methods
Simsek, Ahmet Salih – International Journal of Assessment Tools in Education, 2023
Likert-type item is the most popular response format for collecting data in social, educational, and psychological studies through scales or questionnaires. However, there is no consensus on whether parametric or non-parametric tests should be preferred when analyzing Likert-type data. This study examined the statistical power of parametric and…
Descriptors: Error of Measurement, Likert Scales, Nonparametric Statistics, Statistical Analysis
Nazari, Sanaz; Leite, Walter L.; Huggins-Manley, A. Corinne – Journal of Experimental Education, 2023
The piecewise latent growth models (PWLGMs) can be used to study changes in the growth trajectory of an outcome due to an event or condition, such as exposure to an intervention. When there are multiple outcomes of interest, a researcher may choose to fit a series of PWLGMs or a single parallel-process PWLGM. A comparison of these models is…
Descriptors: Growth Models, Statistical Analysis, Intervention, Comparative Analysis
Olivera-Aguilar, Margarita; Rikoon, Samuel H.; Gonzalez, Oscar; Kisbu-Sakarya, Yasemin; MacKinnon, David P. – Educational and Psychological Measurement, 2018
When testing a statistical mediation model, it is assumed that factorial measurement invariance holds for the mediating construct across levels of the independent variable X. The consequences of failing to address the violations of measurement invariance in mediation models are largely unknown. The purpose of the present study was to…
Descriptors: Error of Measurement, Statistical Analysis, Factor Analysis, Simulation
Porter, Kristin E. – Journal of Research on Educational Effectiveness, 2018
Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Porter, Kristin E. – Grantee Submission, 2017
Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Cao, Mengyang; Tay, Louis; Liu, Yaowu – Educational and Psychological Measurement, 2017
This study examined the performance of a proposed iterative Wald approach for detecting differential item functioning (DIF) between two groups when preknowledge of anchor items is absent. The iterative approach utilizes the Wald-2 approach to identify anchor items and then iteratively tests for DIF items with the Wald-1 approach. Monte Carlo…
Descriptors: Monte Carlo Methods, Test Items, Test Bias, Error of Measurement
Kelcey, Benjamin; Dong, Nianbo; Spybrook, Jessaca; Cox, Kyle – Journal of Educational and Behavioral Statistics, 2017
Designs that facilitate inferences concerning both the total and indirect effects of a treatment potentially offer a more holistic description of interventions because they can complement "what works" questions with the comprehensive study of the causal connections implied by substantive theories. Mapping the sensitivity of designs to…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Mediation Theory, Models
Kelly, Sean; Ye, Feifei – Journal of Experimental Education, 2017
Educational analysts studying achievement and other educational outcomes frequently encounter an association between initial status and growth, which has important implications for the analysis of covariate effects, including group differences in growth. As explicated by Allison (1990), where only two time points of data are available, identifying…
Descriptors: Regression (Statistics), Models, Error of Measurement, Scores
Porter, Kristin E. – MDRC, 2016
In education research and in many other fields, researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Maslowsky, Julie; Jager, Justin; Hemken, Douglas – International Journal of Behavioral Development, 2015
Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…
Descriptors: Structural Equation Models, Computation, Goodness of Fit, Effect Size
Jan, Show-Li; Shieh, Gwowen – Journal of Educational and Behavioral Statistics, 2014
The analysis of variance (ANOVA) is one of the most frequently used statistical analyses in practical applications. Accordingly, the single and multiple comparison procedures are frequently applied to assess the differences among mean effects. However, the underlying assumption of homogeneous variances may not always be tenable. This study…
Descriptors: Sample Size, Statistical Analysis, Computation, Probability

Peer reviewed
Direct link
