Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 3 |
Descriptor
| Computer Science Education | 3 |
| Error Patterns | 3 |
| Programming | 3 |
| Statistical Analysis | 3 |
| College Students | 2 |
| Foreign Countries | 2 |
| Introductory Courses | 2 |
| Novices | 2 |
| Programming Languages | 2 |
| Qualitative Research | 2 |
| Student Attitudes | 2 |
| More ▼ | |
Author
Publication Type
| Journal Articles | 3 |
| Reports - Research | 3 |
Education Level
| Higher Education | 3 |
| Postsecondary Education | 3 |
Audience
Location
| Finland | 1 |
| Philippines | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Becker, Brett A.; Glanville, Graham; Iwashima, Ricardo; McDonnell, Claire; Goslin, Kyle; Mooney, Catherine – Computer Science Education, 2016
Programming is an essential skill that many computing students are expected to master. However, programming can be difficult to learn. Successfully interpreting compiler error messages (CEMs) is crucial for correcting errors and progressing toward success in programming. Yet these messages are often difficult to understand and pose a barrier to…
Descriptors: Computer Science Education, Programming, Novices, Error Patterns
Veerasamy, Ashok Kumar; D'Souza, Daryl; Laakso, Mikko-Jussi – Journal of Educational Technology Systems, 2016
This article presents a study aimed at examining the novice student answers in an introductory programming final e-exam to identify misconceptions and types of errors. Our study used the Delphi concept inventory to identify student misconceptions and skill, rule, and knowledge-based errors approach to identify the types of errors made by novices…
Descriptors: Computer Science Education, Programming, Novices, Misconceptions
Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C. – Journal of Educational Computing Research, 2013
In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…
Descriptors: Programming, High Achievement, Introductory Courses, Qualitative Research

Peer reviewed
Direct link
