Publication Date
| In 2026 | 1 |
| Since 2025 | 11 |
| Since 2022 (last 5 years) | 23 |
| Since 2017 (last 10 years) | 106 |
| Since 2007 (last 20 years) | 305 |
Descriptor
| Computation | 351 |
| Statistical Analysis | 351 |
| Regression (Statistics) | 128 |
| Models | 83 |
| Bayesian Statistics | 77 |
| Maximum Likelihood Statistics | 74 |
| Comparative Analysis | 70 |
| Statistics | 55 |
| Simulation | 48 |
| Error of Measurement | 46 |
| Statistical Bias | 44 |
| More ▼ | |
Source
Author
| Schochet, Peter Z. | 7 |
| Zhang, Zhiyong | 5 |
| Harring, Jeffrey R. | 4 |
| Hedges, Larry V. | 4 |
| Reardon, Sean F. | 4 |
| Bentler, Peter M. | 3 |
| Chung, Yeojin | 3 |
| Dorans, Neil J. | 3 |
| Dorie, Vincent | 3 |
| Ferron, John M. | 3 |
| Gelman, Andrew | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
| Practitioners | 3 |
| Teachers | 3 |
| Policymakers | 2 |
| Researchers | 2 |
| Students | 1 |
Location
| Netherlands | 5 |
| Pennsylvania | 5 |
| California | 4 |
| Germany | 4 |
| Australia | 3 |
| Brazil | 3 |
| Canada | 3 |
| Florida | 3 |
| Massachusetts | 3 |
| Massachusetts (Boston) | 3 |
| Michigan | 3 |
| More ▼ | |
Laws, Policies, & Programs
| Abbott v Burke | 1 |
| Rodriguez v San Antonio… | 1 |
| Serrano v Priest | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Alexander Kwon; Kyungtae Lee – Evaluation Review, 2025
We study the external validity of instrumental variable estimation. The key assumption we impose for external validity is conditional external unconfoundedness among compliers, which means that the treatment effect and target selection are independent among compliers conditional on covariates. We study this assumption with a case study about the…
Descriptors: Validity, Computation, Time Management, Fuels
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Xiang Meng; Luke Miratrix; Natesh Pillai; Aaron Smith – Society for Research on Educational Effectiveness, 2025
Matching methods are widely used in educational research to estimate causal effects when randomization is not feasible. These techniques pair treated units (such as schools receiving an intervention) with similar control units based on observable characteristics. However, current statistical inference procedures for these methods can produce…
Descriptors: Educational Research, Computation, Robustness (Statistics), Statistical Analysis
E. C. Hedberg; Larry V. Hedges – Evaluation Review, 2026
The difference in differences design is widely used to assess treatment effects in natural experiments or other situations where random assignment cannot, or is not, used (see, e.g., Angrist & Pischke, 2009). The researcher must make important decisions about which comparisons to make, the measurements to make, and perhaps the number of…
Descriptors: Statistical Analysis, Computation, Effect Size, Quasiexperimental Design
Muwon Kwon; Peter M. Steiner – Society for Research on Educational Effectiveness, 2025
Background: Double/debiased machine learning (DML) methods have been proposed to overcome the regularization bias from the naive approach of ML methods (Chernozhukov et al., 2018). DML methods use a partialling-out approach which removes the effect of confounders from both the treatment and outcome and then regresses the residualized outcome on…
Descriptors: Artificial Intelligence, Statistical Analysis, Computation, Inferences
Kenneth Tyler Wilcox; Ross Jacobucci; Zhiyong Zhang; Brooke A. Ammerman – Grantee Submission, 2023
Text is a burgeoning data source for psychological researchers, but little methodological research has focused on adapting popular modeling approaches for text to the context of psychological research. One popular measurement model for text, topic modeling, uses a latent mixture model to represent topics underlying a body of documents. Recently,…
Descriptors: Bayesian Statistics, Content Analysis, Undergraduate Students, Self Destructive Behavior
Ari Decter-Frain; Pratik Sachdeva; Loren Collingwood; Hikari Murayama; Juandalyn Burke; Matt Barreto; Scott Henderson; Spencer Wood; Joshua Zingher – Sociological Methods & Research, 2025
We consider the cascading effects of researcher decisions throughout the process of quantifying racially polarized voting (RPV). We contrast three methods of estimating precinct racial composition, Bayesian Improved Surname Geocoding (BISG), fully Bayesian BISG, and Citizen Voting Age Population (CVAP), and two algorithms for performing ecological…
Descriptors: Voting, Computation, Racial Composition, Bayesian Statistics
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Jianbin Fu; TsungHan Ho; Xuan Tan – Practical Assessment, Research & Evaluation, 2025
Item parameter estimation using an item response theory (IRT) model with fixed ability estimates is useful in equating with small samples on anchor items. The current study explores the impact of three ability estimation methods (weighted likelihood estimation [WLE], maximum a posteriori [MAP], and posterior ability distribution estimation [PST])…
Descriptors: Item Response Theory, Test Items, Computation, Equated Scores
Fangxing Bai; Ben Kelcey; Yanli Xie; Kyle Cox – Journal of Experimental Education, 2025
Prior research has suggested that clustered regression discontinuity designs are a formidable alternative to cluster randomized designs because they provide targeted treatment assignment while maintaining a high-quality basis for inferences on local treatment effects. However, methods for the design and analysis of clustered regression…
Descriptors: Regression (Statistics), Statistical Analysis, Research Design, Educational Research
Wenyi Li; Qian Zhang – Society for Research on Educational Effectiveness, 2025
This study compared Stepwise Logistic Regression (Stepwise-LR) and three machine learning (ML) methods--Classification and Regression Trees (CART), Random Forest (RF), and Generalized Boosted Modeling (GBM) for estimating propensity scores (PS) applied in causal inference. A simulation study was conducted considering factors of the sample size,…
Descriptors: Regression (Statistics), Artificial Intelligence, Statistical Analysis, Computation
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Lee, Hyung Rock; Sung, Jaeyun; Lee, Sunbok – International Journal of Assessment Tools in Education, 2021
Conventional estimators for indirect effects using a difference in coefficients and product of coefficients produce the same results for continuous outcomes. However, for binary outcomes, the difference in coefficient estimator systematically underestimates the indirect effects because of a scaling problem. One solution is to standardize…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Scaling
Frank Wang – Numeracy, 2021
In late November 2020, there was a flurry of media coverage of two companies' claims of 95% efficacy rates of newly developed COVID-19 vaccines, but information about the confidence interval was not reported. This paper presents a way of teaching the concept of hypothesis testing and the construction of confidence intervals using numbers announced…
Descriptors: COVID-19, Pandemics, Immunization Programs, Hypothesis Testing
Njål Foldnes; Jonas Moss; Steffen Grønneberg – Structural Equation Modeling: A Multidisciplinary Journal, 2025
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under non-normality. These test statistics have limit distributions characterized by eigenvalues whose estimates are highly unstable and biased in known directions. To take this into account, we design model-based trend predictions to approximate the…
Descriptors: Goodness of Fit, Structural Equation Models, Robustness (Statistics), Prediction

Peer reviewed
Direct link
