NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Aid to Families with…1
What Works Clearinghouse Rating
Showing 1 to 15 of 35 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hening – Research Synthesis Methods, 2023
Many statistical methods (estimators) are available for estimating the consensus value (or average effect) and heterogeneity variance in interlaboratory studies or meta-analyses. These estimators are all valid because they are developed from or supported by certain statistical principles. However, no estimator can be perfect and must have error or…
Descriptors: Statistical Analysis, Computation, Measurement Techniques, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
da Silva, Marcelo A.; Liu, Ren; Huggins-Manley, Anne C.; Bazán, Jorge L. – Educational and Psychological Measurement, 2019
Multidimensional item response theory (MIRT) models use data from individual item responses to estimate multiple latent traits of interest, making them useful in educational and psychological measurement, among other areas. When MIRT models are applied in practice, it is not uncommon to see that some items are designed to measure all latent traits…
Descriptors: Item Response Theory, Matrices, Models, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karabatsos, George – Grantee Submission, 2017
This article introduces a Bayesian method for testing the axioms of additive conjoint measurement. The method is based on an importance sampling algorithm that performs likelihood-free, approximate Bayesian inference using a synthetic likelihood to overcome the analytical intractability of this testing problem. This new method improves upon…
Descriptors: Bayesian Statistics, Measurement, Statistical Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Educational and Psychological Measurement, 2017
In behavioral sciences broadly, estimating growth models with Bayesian methods is becoming increasingly common, especially to combat small samples common with longitudinal data. Although Mplus is becoming an increasingly common program for applied research employing Bayesian methods, the limited selection of prior distributions for the elements of…
Descriptors: Models, Bayesian Statistics, Statistical Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Man, Kaiwen; Harring, Jeffery R.; Ouyang, Yunbo; Thomas, Sarah L. – International Journal of Testing, 2018
Many important high-stakes decisions--college admission, academic performance evaluation, and even job promotion--depend on accurate and reliable scores from valid large-scale assessments. However, examinees sometimes cheat by copying answers from other test-takers or practicing with test items ahead of time, which can undermine the effectiveness…
Descriptors: Reaction Time, High Stakes Tests, Test Wiseness, Cheating
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Golubickis, Marius; Falben, Johanna K.; Cunningham, William A.; Macrae, C. Neil – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2018
Although ownership is acknowledged to exert a potent influence on various aspects of information processing, the origin of these effects remains largely unknown. Based on the demonstration that self-relevance facilitates perceptual judgments (i.e., the self-prioritization effect), here we explored the possibility that ownership enhances object…
Descriptors: Ownership, Self Concept, Stimuli, Responses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pfaffel, Andreas; Spiel, Christiane – Practical Assessment, Research & Evaluation, 2016
Approaches to correcting correlation coefficients for range restriction have been developed under the framework of large sample theory. The accuracy of missing data techniques for correcting correlation coefficients for range restriction has thus far only been investigated with relatively large samples. However, researchers and evaluators are…
Descriptors: Correlation, Sample Size, Error of Measurement, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Can, Seda; van de Schoot, Rens; Hox, Joop – Educational and Psychological Measurement, 2015
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
Descriptors: Factor Analysis, Comparative Analysis, Maximum Likelihood Statistics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Chung, Hwan; Anthony, James C. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
This article presents a multiple-group latent class-profile analysis (LCPA) by taking a Bayesian approach in which a Markov chain Monte Carlo simulation is employed to achieve more robust estimates for latent growth patterns. This article describes and addresses a label-switching problem that involves the LCPA likelihood function, which has…
Descriptors: Bayesian Statistics, Statistical Analysis, Markov Processes, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3