Publication Date
| In 2026 | 0 |
| Since 2025 | 19 |
Descriptor
| Statistical Analysis | 19 |
| Models | 8 |
| Structural Equation Models | 7 |
| Educational Research | 6 |
| Causal Models | 5 |
| Computation | 4 |
| Factor Analysis | 4 |
| Mathematical Formulas | 3 |
| Sample Size | 3 |
| Scores | 3 |
| Simulation | 3 |
| More ▼ | |
Source
Author
| A. R. Georgeson | 1 |
| Adam C. Sales | 1 |
| Afeez Jinadu | 1 |
| An Thi Tan Nguyen | 1 |
| Anum Khushal | 1 |
| Benjamin Kelcey | 1 |
| Brian A. Couch | 1 |
| Charlotte Z. Mann | 1 |
| Chunhua Cao | 1 |
| Daniel McNeish | 1 |
| Dung Tran | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 17 |
| Reports - Research | 15 |
| Reports - Descriptive | 2 |
| Guides - General | 1 |
| Information Analyses | 1 |
| Reports - Evaluative | 1 |
Audience
| Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Afeez Jinadu; Eugenia Okwilagwe – International Journal of Research in Education and Science, 2025
The study investigated the structural equation modelling of nine variables consisting of research undertaking, digi-tech construct (digital nativity, category of adoption of digital technologies, digital literacy, digital citizenship, statistical software anxiety, self-efficacy and knowledge) and researcher statistical software skills in the…
Descriptors: Statistical Analysis, Computer Software, Structural Equation Models, Foreign Countries
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2025
Most methods for structural equation modeling (SEM) focused on the analysis of covariance matrices. However, "Historically, interesting psychological theories have been phrased in terms of correlation coefficients." This might be because data in social and behavioral sciences typically do not have predefined metrics. While proper methods…
Descriptors: Correlation, Statistical Analysis, Models, Tests
Ethan Fosse; Fabian T. Pfeffer – Sociological Methods & Research, 2025
Over the past decade there has been a striking increase in the number of quantitative studies examining the effects of social mobility, with almost all based on the diagonal reference model (DRM). We make four main contributions to this rapidly expanding literature. First, we show that under plausible values of mobility effects, the DRM will, in…
Descriptors: Social Mobility, Models, Birth Rate, Statistical Analysis
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Matt L. Miller; Emilio Ferrer; Paolo Ghisletta – International Journal of Behavioral Development, 2025
We examine recommendations for three key features of latent growth curve models in the structural equation modeling framework. As a basis for the discussion, we review current practice in the social and behavioral sciences literature as found in 441 reports published in the 19 months beginning in January 2019 and compare our findings to extant…
Descriptors: Social Science Research, Behavioral Science Research, Structural Equation Models, Statistical Analysis
A. R. Georgeson – Structural Equation Modeling: A Multidisciplinary Journal, 2025
There is increasing interest in using factor scores in structural equation models and there have been numerous methodological papers on the topic. Nevertheless, sum scores, which are computed from adding up item responses, continue to be ubiquitous in practice. It is therefore important to compare simulation results involving factor scores to…
Descriptors: Structural Equation Models, Scores, Factor Analysis, Statistical Bias
Njål Foldnes; Jonas Moss; Steffen Grønneberg – Structural Equation Modeling: A Multidisciplinary Journal, 2025
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under non-normality. These test statistics have limit distributions characterized by eigenvalues whose estimates are highly unstable and biased in known directions. To take this into account, we design model-based trend predictions to approximate the…
Descriptors: Goodness of Fit, Structural Equation Models, Robustness (Statistics), Prediction
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Jay Fie Paler Luzano – International Journal of Technology in Education, 2025
This study investigated the role of ChatGPT-assisted data analysis in mathematics education research within the post-modern scholarly milieu using a scoping review approach. This examined how ChatGPT contributes to ethical, reliable, rigorous, and context-sensitive data analysis in mathematics education research. The findings reveal five (5)…
Descriptors: Artificial Intelligence, Mathematics Education, Educational Research, Data Analysis
Ethan C. Brown; Mohammed A. A. Abulela – Practical Assessment, Research & Evaluation, 2025
Moderated multiple regression (MMR) has become a fundamental tool for applied researchers, since many effects are expected to vary based on other variables. However, the inherent complexity of MMR creates formidable challenges for adequately performing power analysis on interaction effects to ensure reliable and replicable research results. Prior…
Descriptors: Statistical Analysis, Multiple Regression Analysis, Models, Programming Languages
Mahadi Hasan Miraz; Sanmugam Annamalah; Rohana Sham – Educational Process: International Journal, 2025
Background/purpose: It revisits Partial Least Squares Structural Equation Modeling (PLS-SEM) as a robust tool for analyzing non-normal data and small samples, offering predictive modeling advantages. This study also compares the merits, practical applications, and added value of both tools in tackling complicated research issues, notably in…
Descriptors: Evaluation Methods, Educational Research, Structural Equation Models, Data Analysis
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
An Thi Tan Nguyen; Dung Tran – Mathematics Education Research Journal, 2025
This study draws on quantitative reasoning research to explain how secondary mathematics preservice teachers' (PSTs) modelling competencies changed as they participated in a teacher education programme that integrated modelling experience. Adopting a mixed methods approach, we documented 110 PSTs' competencies in Vietnam using an adapted Modelling…
Descriptors: Statistical Analysis, Models, Competence, Teaching Skills
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
